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Time series 

Time series is a set of observations for a particular 

phenomenon and for a period of time and usually the unit of 

time equal and it symbolizes the series by (𝑍𝑡). 

 

A time series is a collection of observations of well-defined 

data items obtained through repeated measurements over 

time. For example, measuring the value of retail sales each 

month of the year would comprise a time series. 
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Time series are classified to: 

Continuous time series : the  series that are 

continuous recording her observations of the time 

and could be seen the value of the series in every 

moment of time (such as temperature , price … etc) 

Discrete time series : are those time series that 

take the observations of the phenomenon at the 

points of previous time of equal periods  and may 

be an hour or a moment or year … etc (such as rain 

, when is measured daily ) 



Time series consist of four 
components 

Trend 
component Seasonal 

component 

Cyclical 
component 

Irregular 
component 
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Time series Analysis requires the factors affecting it has been 
found that the time series are affected by the following factors 
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The general trend  

Is the tendency of values of the phenomenon to increase 
or decrease during the period of the time series and the 
overall trend is positive when increasing  the value of the 
phenomenon over time for example , population growth 
is a positive trend time series . 

 
The general trend is negative when decreasing the value 
of the phenomenon over time, such as the time series of 
mortality from the disease of small pox in Iraq. 
 
 

 
 



• Trend component: 

1- Long-run increase or decrease over time (overall 

upward or downward) 

2- Data taken over a long period of time. 

 

 

  
 

 

 

 

 

• Trend can be up ward or down ward. 

• Trend can be linear or non-linear 
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Can be define as seasonal as a pattern repeats it self during 

certain time periods for example , sales of oil and gas are 

high in winter and low in summer and that the change 

experienced by time series be in the time periods fixed such 

as hours and days and months and seasons knows change 

seasonality. For example rain fall in winter in a given year 

and not falling in the winter in other year. 

 

Seasonal change: 
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A change that happens in great cycles and may increase the 

range , each for ten years as the phenomenon back to her first 

after this period such as a solar eclipse. 

 

Cyclical Change : 
 

The changes that occur due to reason for an 

unexpected emergency random, such as  earthquakes , 

wars and revolutions as the cause of such changes 

turbulent movement and irregular in their direction 

disappear after a short period of time and return the 

series to the movement of regular shall and take as a 

new direction. 

 

Irregular Change : 
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Additive model : in the additive model the observed time series (𝑌𝑡) is 

considered to be sum of independent component ; the seasonal St , the 

trend Tt , the cyclical Ct and the Irregular It. 

Observed series = Trend + Seasonal + Cyclical + Irregular 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐶𝑡 + 𝐼𝑡  

 

 
 

 

Types of model in  time series : 
 

Multiplicative  model  

In the multiplicative model the original time series in expressed as the 

product of trend , seasonal , cyclical and irregular components. 

Observed time series = Trend *Seasonal * Cyclical *Irregular 

𝑌𝑡 = 𝑇𝑡 ∗ 𝑆𝑡 ∗ 𝐶𝑡 ∗  𝐼𝑡 
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Chapter Two  

Measurement of Trend 

Trend is measured by the following mathematical methods. 

1- Graphical method. 

2- Method of semi averages. 

3- Method of moving averages. 

4- Methods of minimum least squares. 

The increase or decrease in the movements of a time series is 

called trend. A time series data may show upward trend or 

downward trend for a period of years and this may be due to 

factors like :  

- Increase in population .  

- Change in technological progress . 

- Large scale shift in consumers demands . 
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Graphical method: 

This is the easiest and simplest method of measuring trend. 

In this method , given data must be plotted on the graph 

taken time on the horizontal axis and values on the vertical 

axis. Draw a smooth curve which will show the direction of 

the trend while fitting a trend line the following important 

points should be noted to get a perfect trend line. 

 

In this method the data is denoted on graph paper . We take 

"Time " on X-axis and "data" on Y-axis . On graph there will 

be a point for every point of time . We make a smooth hand 

curve with the help of this plotted points .  
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Ex2-1// Fit a trend line to the following data by using 

graphical method. 

No. Year Profit  

1 1989 148 

2 1990 149 

3 1991 149.5 

4 1992 149 

5 1993 150.5 

6 1994 152.2 

7 1995 153.7 

8 1996 153 



Solution 
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In this method the given data in divided into two parts in the 

sequence data we have even in this case the in divided into two 

parts, but if the data sequence 3,5,7,9, … , etc (it means that 

odd) in this case the data to divided in two equal parts with 

neglect the number in the middle. 
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Method of semi average  



Ex2-2// fit a trend line to the following data by using semi 
averages. 
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No. Year Y 

𝑦1 =  
𝑦𝑖

𝑛
2388 

1 1991 1812 

2 1992 2721 

 3 1993 3271 

4 1994 1944 

5 1995 2193 



Ex2-2// fit a trend line to the following data by using semi 
averages. 
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6 1996 2478 

𝐲𝟐 = 𝟑𝟑𝟗𝟏 

7 1997 3139 

8 1998 3617 

9 1999 3613 

10 2000 4110 



Ex2-2// fit a trend line to the following data by using semi 
averages. 
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Ex2-3// fit a trend line to the following data by using semi 
averages. 
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No. Year Y   

1 1995 778 

𝑦1 = 753 

2 1996 747 

3 1997 795 

4 1998 735 

5 1999 708 

 اهمال دةكةين 720 2000 6

7 2001 603 

𝑦2 = 645 

8 2002 650 

9 2003 621 

10 2004 693 

11 2005 660 



𝑦1 =
778 + 747 + 795 + 735 + 708

5
= 753 

𝑦1 =
603 + 650 + 621 + 693 + 660

5
= 645 

20 
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Advantages and Disadvantages of Semi Average method: 

Advantages: 

1- This method is simple to understand as compare to other methods 

for measuring the secular trend. 

2- Every one to apply this method will get the same result. 
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Disadvantages: 

1- The method assumes a straight line relationship between the 

plotted point without considering the fact whether that relationship 

exists or not. 

2- If we have more data to the original data then we have to do the 

complete process again for the new data to get the trend value and 

the trend line also changes.  



Method of least squares (LSD) 

This is one of the most important methods of fitting a mathematical 

trend the fitted trend is termed as the best in the sense that the sum 

of squares of deviations of observations from it is minimized. 
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This method is most widely in practice .When this method is 

applied, a trend line is fitted to data in such a manner that the 

following two conditions are satisfied : 

The sum of deviations of the actual values of Y and computed 

values of Y (Yc) is zero:  



• Fitting of linear trend  

Given the data (𝑦𝑡,t) from n periods where t denotes time period 

such as year , month , day, …, etc we have the values of two 

constants, ''a'' , and ''b'' of the linear equation.  

 

24 

𝑦 = 𝑦𝑡 

𝑦 = 𝑎 + 𝑏𝑡 

𝑦 = 𝛼 + 𝛽 𝑡𝑖  (Estimate model) (Trend equation) 

𝛽 =
 𝑡𝑖𝑦𝑖 − 𝑛𝑡𝑦 

 𝑡𝑖
2 − 𝑛𝑡 2

 

𝛼 = 𝑦 − 𝛽 𝑡  



Ex2-4// If we have the following data production. 
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Required:  

• Find trend equation (estimation model) by use least square 

method (LSD). 

• Draw trend line by use estimate model.  

• Find Mean Square Error (MSE). 

 

No. Year yi 

1 1998 10 

2 1999 8 

3 2000 12 

4 2001 11 

5 2002 4 

6 2003 8 

7 2004 3 

 𝐲𝐢 56 
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𝒕𝒊 𝒕𝒊𝒚𝒊 𝒕𝒊𝟐 

1 10 1 

2 16 4 

3 36 9 

4 44 16 

5 20 25 

6 48 36 

7 21 49 

  𝟐𝟖 195 140 
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• Solution: 

𝑦 = 𝛼 + 𝛽 𝑡𝑖   

𝛽 =
 𝑡𝑖𝑦𝑖 − 𝑛𝑡𝑦

 𝑡𝑖
2 − 𝑛𝑡 2

 

𝑡 =
 𝑡𝑖

𝑛
=

28

7
= 4 

𝑦 =
 𝑦𝑖

𝑛
=

56

7
= 8 

𝛽 =
195 − (7)(4)(8)

140 − (7)(42)
= −1.036 

𝛼 = 𝑦 − 𝛽 𝑡  

= 8 − −1.036 4 = 12.144 

𝑦 = 12.144 − 1.036 𝑡𝑖  
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2 - 𝑦 1 = 12.144 − 1.036 1 = 11.108  

𝑦 2 = 12.144 − 1.036 (2) =10.72 

𝑦 3 = 12.144 − 1.036 3 =9.036 

       

.

.

.
 

𝑦 7 = 12.144 − 1.036 7 =4.892 

3- MSE  = 
 𝑒𝑖

2

𝑛−1
  

=
43.046

7−1
=7.17 

 

𝑒𝑖 = 𝑦𝑖 − 𝑦 𝑖  𝑒𝑖
2  

-1.108 1.228 

-2.72 7.398 

2.044 8.769 

3 9 

-2.944 8.785 

2.072 4.293 

-1.892 3.858 

  𝑒𝑖
2  43.046 



29 

H.W // if we have the following data production. 

 

 

 

 

 

 

 

 

 

• Required:  

1- Find trend equation (estimation model) by use least square 

method (LSD). 

2- Draw trend line by use estimate model.  

3- Find Mean Square Error (MSE). 

 

 

 

No. Year yi 

1 1991 4 

2 1992 2 

3 1993 3 

4 1994 4 

5 1995 5 

6 1996 7 

7 1997 10 

8 1998 8 

9 1999 12 

10 2000 11 
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Moving average method (MA) 

Ex2-6// The following data represent the number of people 

visiting the Rizgari hospital during the years (1998 – 2005) who 

safer from tooth decay. 

Required: 

Estimate number of patients visiting during (2006) by moving 

average method on the duration of two years. 

 

 

 

 

• Solution: 

 

 

 

 

No. Year No. of people (MA)   

1 1998 180 -  

2 1999 500  - 
3 2000 420 340 

4 2001 320 460 

5 2002 191 370 

6 2003 601 255.5 

7 2004 860 396 

8 2005 750 730 

9 2006 860 + 750

2
= 805 

805 
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H.W// 

If you have the following data. 

 

 

 

 

Month  yi MA 3 MA 5 

1 200     

2 135     

3 195     

4 197     

5 310     

6 175     

7 155     

8 130     

9 220     

10 277     

11 235     

12 ?     

Required: : Estimate the number of sales during the 12 by 

using moving average method on the duration (3) months and (5) 

months. 
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Trend equation by use semi average method: 

In this way turns (𝑡𝑖) in a form the general trend (𝑦 = 𝛼 + 𝛽 𝑡𝑖)  to 

𝑛𝑖  a regression equation becomes as follows: 

𝑦 = 𝑎 + 𝑏 𝑛𝑖  

𝑏 =
𝑦 2 − 𝑦 1

𝑛 2 − 𝑛 1
 

𝑎 = 𝑦 1 − 𝑏 𝑛 1   

Or  𝑎 = 𝑦 2 − 𝑏 𝑛 2  
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Ex2-5// the following data represent the time series of the average 

production in a given planet. 

 

 

 

 

No. Year yi 

1 1955 4 

2 1956 8 

3 1957 9 

4 1958 10 

5 1959 12 

6 1960 12 

7 1961 13 

8 1962 15 

9 1963 12 

10 1964 13 

• Requirement: 

1- Find trend equation (estimation model) by use semi average 

method (LSD). 
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𝑦 = 𝑎 + 𝑏 𝑛𝑖  

𝑏 =
𝑦 2 − 𝑦 1

𝑛 2 − 𝑛 1
 

𝑦 1 =
4 + 8 + 9 + 10 + 12

5
= 𝟖. 𝟔 

𝑦 2 =
12 + 13 + 15 + 12 + 13

5
= 𝟏𝟑 

𝑛 1 =
1955 + 1956 + 1957 + 1958 + 1959

5
= 𝟏𝟗𝟓𝟕 

𝑛 1 =
1960 + 1961 + 1962 + 1963 + 1964

5
= 𝟏𝟗𝟔𝟐 

𝒃 =
13 − 8.6

1962 − 1957
=

4.4

5
= 𝟎.𝟖𝟖 

𝑎 = 𝑦 1 − 𝑏 𝑛 1  

 

 

 

 

= 8.6 − (0.88)(1957) 

= -1713.5 

𝑦 = −1713.5 + 0.88𝑛𝑖  the trend equation 
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The analysis of time series is based on the assumption 

that successive values in the data file represent 

consecutive measurements taken at equally spaced 

time intervals. 

 

There are two main goals of time series analysis:  

• (a) identifying the nature of the phenomenon represented by the 

sequence of observations. 

• (b) forecasting (predicting future values of the time series variable).  

 In time series analysis it is assumed that the data consist of a 

systematic pattern (usually a set of identifiable components) and 

random noise (error) which usually makes the pattern difficult to 

identify.  

•      Most time series patterns can be described in terms of two basic 

classes of components: trend and seasonality.  
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 The Simple Moving Average (SMA): The smoothed statistic St 

is just the mean of the k observations: 

 

• 𝑺𝒕 =
𝟏

𝒌
 𝑿

𝒕+
𝒌−𝟏

𝟐
−𝒏

                         𝒊𝒇  𝒌 𝒊𝒔 𝒐𝒅𝒅𝒌−𝟏
𝒏=𝟎  

• 𝑺
𝒕+

𝟏

𝟐

=
𝟏

𝒌
 𝑿

𝒕+
𝒌

𝟐
−𝒏

                          𝒊𝒇 𝒌 𝒊𝒔 𝒆𝒗𝒆𝒏𝒌−𝟏
𝒏=𝟎  

 

•   Where the choice of an integer k > 1 is arbitrary, and we 

start with 𝒕 =
𝒌+𝟏

𝟐
 if k is odd (or t=k/2 if k is even)  

• adding one to t for each step when we find the values of {St}. 
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Ex-2-6:  Consider the following data of the monthly actual demand 

on a certain commodity to find the three and four month moving 

average. 

 

 

 

 

 

 

Sol.:   𝒌 = 𝟑  ⇒  𝒇𝒐𝒓 𝒆𝒙𝒂𝒎𝒑𝒍𝒆 𝒕𝒐 𝒇𝒊𝒏𝒅 𝑺𝟐 

  𝑺𝟐 =
𝟏

𝟑
 𝑿𝟑−𝒏 =

𝟏

𝟑
𝑿𝟑 + 𝑿𝟐 + 𝑿𝟏 =

𝟏

𝟑
𝟏𝟑𝟒 + 𝟏𝟒𝟑 + 𝟏𝟒𝟒 = 𝟏𝟒𝟎. 𝟑𝟑

𝟐

𝒏=𝟎

 

   Using the same procedure to find the rest values of the three and 

four (centred) months moving average. 

 

 

 

Month 1 2 3 4 5 6 7 8 9 10 

Demand 
134 143 144 130 135 125 140 137 143 126 

Month 11 12 13 14 15 16 17 18 19 20 

Demand 
132 139 136 132 124 137 128 134 145 146 
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t Xt 3month 

M.A. 

4month  

M.A. 

centred   t Xt 3month 

 M.A. 

4month  

M.A. 

centred 

1 134       11 132 132.33   135.125 

                133.25   

2 143 140.33     12 139 135.67   134 

      137.75         134.75   

3 144 139   137.875 13 136 135.67   133.75 

      138         132.75   

4 130 136.33   135.75 14 132 130.67   132.5 

      133.5         132.25   

5 135 130   133 15 124 131   131.25 

      132.5         130.25   

6 125 133.33   133.375 16 137 129.67   130.5 

      134.25         130.75   

7 140 134   135.25 17 128 133   133.375 

      136.25         136   

8 137 140   136.375 18 134 135.67   137.125 

      136.5         138.25   

9 143 135.33   135.5 19 145 141.67     

      134.5             

10 126 133.67   134.75 20 146       

      135             
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The Weighted Moving Average (WMA): 

•   A slightly more intricate method for smoothing a raw time 

series {Xt} is to calculate a weighted moving average by 

first choosing a set of weighting factors provide that the 

sum of weights equal one and then using these weights to 

calculate the smoothed statistics {St} as described in SMA 

above after product each value { Xt } by its weight . In 

practice the weighting factors are often chosen to give more 

weight to the most recent terms in the time series and less 

weight to older data.  
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• Ex-2-7: Using data of Ex-2-6 to find the weighted three month 

moving average with weights 0.2, 0.3 and 0.5. 

• Sol.: K=3 ⇒ for example to find S2 and S3: 

S2 = 0.2 ∗ 134 + 0.3 ∗ 143 + 0.5 ∗ 144 = 141.7 

S3 = 0.2 ∗ 143 + 0.3 ∗ 144 + 0.5 ∗ 130 = 136.8 

And so on, hence the table below shows all values of the weighted three 

month moving average: 

 

Xt St 
  Xt St 

134   132 134.3 

143 141.7 139 136.1 

144 136.8 136 134.6 

130 135.3 132 128.8 

135 129 124 132.1 

125 134.5 137 129.9 

140 135.5 128 132.8 

137 140.6 134 138.3 

143 133.3 145 134.3 

126 132.4 146   
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 The Exponential Moving Average (EMA): 

  Exponential smoothing is a rule of thumb technique for 

smoothing time series data, particularly for recursively applying as 

many as 3 Low-pass filters with exponential window functions.  

The raw data sequence is often represented by {Xt} beginning at 

time t = 0, and the output of the exponential smoothing algorithm 

is commonly written as {St}, which may be regarded as a best 

estimate of what the next value of X will be. When the sequence of 

observations begins at time t = 0, the simplest form of exponential 

smoothing is given by the following: 

𝑺1 = 𝑿1    𝒐𝒓 𝒕𝒉𝒆 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒐𝒇 𝑿𝒕 

   𝑺𝒕= 𝜶𝑿𝒕−𝟏 + 𝟏 − 𝜶 𝑺𝒕−𝟏      ;   𝒕 > 0
 

     Where α is the smoothing factor, and 0 < α < 1. 
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 Ex-2-8: Find the values of the time series of data given in Ex-2-6, 

by using exponential smoothing MA when α = 0.3 and α = 0.8. 

Sol.:  S1 =
134+143+⋯+146

20
= 135.5 

For example, we find S2 at α = 0.3 and α = 0.8 as follow: 
S2 = 0.3 ∗ X1 + 1 − 0.3 ∗ S1 = 0.3 ∗ 134 + 0.7 ∗ 135.5 = 135.05

S2 = 0.8 ∗ X1 + 1 − 0.8 ∗ S1 = 0.8 ∗ 134 + 0.2 ∗ 135.5 = 134.30
 

And so on, we can find all rest values as shown in table below : 

 t  Xt 
               St 

  

  t   X t 
              St 

α = 0.3 α = 0.8 α = 0.3 α = 0.8 

1 134 135.5 135.5 11 132 134.25 129.16 

2 143 135.05 134.3 12 139 133.58 131.43 

3 144 137.44 141.26 13 136 135.2 137.49 

4 130 139.4 143.45 14 132 135.44 136.3 

5 135 136.58 132.69 15 124 134.41 132.86 

6 125 136.11 134.54 16 137 131.29 125.77 

7 140 132.78 126.91 17 128 133 134.75 

8 137 134.94 137.38 18 134 131.5 129.35 

9 143 135.56 137.08 19 145 132.25 133.07 

10 126 137.79 141.82 20 146 136.08 142.61 
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Chapter Three 

Seasonal Variation 
In statistics, time series data is data collected at regular intervals. 

When there are patterns that repeat over known, fixed periods of 

time within the data set it is considered to be seasonality, seasonal 

variation, periodic variation, or periodic fluctuations. This variation 

can be either regular or semi-regular. Seasonality may be caused by 

various factors, such as weather, vacation, and holidays and usually 

consists of periodic, repetitive, and generally regular and predictable 

patterns in the levels of a time series.  

 

Seasonality can repeat on a weekly, monthly or quarterly basis, 

these periods of time are structured and occur in a length of time 

less than a year. Seasonal fluctuations in a time series can be 

contrasted with cyclical patterns.  
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Detecting seasonality 

The following graphical techniques can be used to detect 

seasonality:  

-   A run sequence plot will often show seasonality.  

- A seasonal plot will show the data from each season overlapped . 

- A seasonal subseries plot is a specialized technique for showing 

seasonality  

- Multiple box plots can be used as an alternative to the seasonal 

subseries plot to detect seasonality  

- An autocorrelation plot (ACF) can help identify seasonality. 

- Seasonal Index measures how much the average for a particular 

period tends to be above (or below) the expected value  



48 



49 

Measuring seasonality:  

Seasonal variation is measured in terms of an index, called 

a seasonal index. It is an average that can be used to 

compare an actual observation relative to what it would be 

if there were no seasonal variation . An index value is 

attached to each period of the time series within a year. 

The following methods use seasonal indices to measure 

seasonal variations of a time series data.  

- Method of simple averages. 

- Ratio to trend method  

- Ratio-to-moving average method  

- Link relatives method 
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Method of simple averages:  

The idea behind the calculation of seasonal variations consists in 

the possibility and usefulness of determining that part of the 

annual total that is due to each of the twelve months of year . The 

random factor that can arise in a given year is considered 

independently of what might occur next year .  

 

Step-I- We calculate the arithmetic average per month ( or quarter ) 

, then the random influences were eliminated among the years . 

 

 Step-II- To find out the effect of seasonality therefore will 

eliminate the trend. The trend calculated by the method of least 

squares . Monthly ( or quarterly ) averages are needed over several 

years . 
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Ex-3-1: The table below is monthly data series – over two years . 

Use the method of simple average to calculate the index ( 

coefficient ) of seasonality: 

 

 

 

 
Averages for the previous three years before the given two years 

are : 520 , 580 , 540 . 

year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

I 560 500 450 420 420 480 590 750 860 900 900 850 

II 780 720 670 660 630 660 730 860 970 980 950 870 
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Then the linear regression of time series is : ̂y=𝟔𝟏𝟒 + 𝟔𝟎𝒙 
b = 60 indicate the annual rise of trend , on average of the 12 

months . The rise on a single month will be . There is an increasing 

in the trend equivalent with 5 per month . 

To calculate the column of index ( coefficient ) seasonality , each 

monthly data of column ( average – trend ) are divided at the 

respective average 687. 
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Ratio-to-moving average method:  
The measurement of seasonal variation by using the ratio-to-

moving average method provides an index to measure the degree of 

the seasonal variation in a time series. The index is based on a mean 

of 100, with the degree of seasonality measured by variations away 

from the base .  
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1. Find the centred 12 monthly (or 4 quarterly) moving averages 

of the original data values in the time-series.  

2. Express each original data value of the time-series as a 

percentage of the corresponding centred moving average values 

obtained in step(1).In other words, in a multiplicative time-

series model, we get(Original data values)/(Trend values) *100 

= (T*C*S*I)/(T*C)*100 = (S*I) *100. This implies that the 

ratio–to-moving average represents the seasonal and irregular 

components.  

3. Arrange these percentages according to months or quarter of 

given years. Find the averages over all months or quarters of the 

given years.  

4. If the sum of these indices is not 1200(or 400 for quarterly 

figures), multiply then by a correction factor = 1200/ (sum of 

monthly indices). Otherwise, the 12 monthly averages will be 

considered as seasonal indices. 
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Ex.-3-2 : calculate the seasonal index by the ratio-to-moving 

average method from the following data: 

 



58 
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60 

 

 

 

 

 

Link relatives method: 

This method is slightly more complicated and uses data 

more completely than other methods. This method is also 

known as Pearson’s method. This method consists in the 

following steps. 

1. The link relatives for each period are calculated 

by using the below formula : 

𝒍𝒊𝒏𝒌 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒇𝒐𝒓 𝒂𝒏𝒚 𝒑𝒆𝒓𝒊𝒐𝒅 = 
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒑𝒆𝒓𝒊𝒐𝒅 𝒇𝒊𝒈𝒖𝒓𝒆

𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒑𝒆𝒓𝒊𝒐𝒅𝒔 𝒇𝒊𝒈𝒖𝒓𝒆
 

2. Calculate the average of the link relatives for each 

period for all the years using mean or median. 
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3. Convert the average link relatives into chain 

relatives on the basis of the first season. Chain 

relative for any period can be obtained by: 

 
𝒂𝒏𝒚 𝒍𝒊𝒏𝒌 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒇𝒐𝒓 𝒕𝒉𝒂𝒕 𝒑𝒆𝒓𝒊𝒐𝒅 ∗ 𝒄𝒉𝒂𝒊𝒏 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒇𝒐𝒓 𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒑𝒆𝒓𝒊𝒐𝒅𝒔 

𝟏𝟎𝟎
 

the chain relative for the first period is assumed 

to be 100. 

 4. Now the adjusted chain relatives are calculated by subtracting 

correction factor „kd‟ from (k+1)th chain relative respectively. 

 
5. Finally calculate the average of the corrected chain 

relatives and convert the corrected chain relatives as the 

percentages of this average. These percentages are 

seasonal indices calculated by the link relative method. 
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Ex.-3-3 : Apply the method of link relatives to the 

following data and calculate seasonal indices : 
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The calculations in the above table are explained as below: 

𝟔.𝟓

𝟔
∗ 𝟏𝟎𝟎 = 𝟏𝟎𝟖. 𝟑    ;   

𝟕. 𝟖

𝟔. 𝟓
∗ 𝟏𝟎𝟎 = 𝟏𝟐𝟎 ; 

𝟖. 𝟕

𝟕. 𝟖
∗ 𝟏𝟎𝟎 = 𝟏𝟏𝟏. 𝟓 ; … ; 𝒆𝒕𝒄 

Chain relatives‟ row: 

100, 
𝟏𝟎𝟖.𝟐𝟖∗𝟏𝟎𝟎

𝟏𝟎𝟎
= 𝟏𝟎𝟖. 𝟐𝟖  ;  

𝟏𝟐𝟏.𝟔𝟔∗𝟏𝟎𝟖.𝟐𝟖

𝟏𝟎𝟎
= 𝟏𝟑𝟏.𝟕𝟑 𝒂𝒏𝒅 

𝟗𝟑.𝟖𝟔∗𝟏𝟑𝟏.𝟕𝟑

𝟏𝟎𝟎

= 𝟏𝟐𝟑. 𝟔𝟒  

Chain relative of the first quarter (on the basis of first quarter) = 100  

Chain relative of the first quarter (on the basis of the last quarter) = 

𝟖𝟔.𝟑𝟓∗𝟏𝟐𝟑.𝟔𝟒

𝟏𝟎𝟎
= 𝟏𝟎𝟔. 𝟕𝟔 

The difference between these chain relatives = 106.76 – 100 = 6.76. 

Difference per quarter =.
𝟔.𝟕𝟔

𝟒
= 𝟏. 𝟔𝟗  
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Corrected chain relative is: 100; 108.28 – 1.69 = 106.59; 131.73 – 

2*1.69 = 128.35;   123.64 – 3*1.69 = 118.57  

Average of corrected chain relatives = 
𝟏𝟎𝟎+𝟏𝟎𝟔.𝟓𝟗+𝟏𝟐𝟖.𝟑𝟓+𝟏𝟏𝟖.𝟓𝟕

𝟒

= 𝟏𝟏𝟑. 𝟑𝟖 

Seasonal variation index are : 

𝟏𝟎𝟎

𝟏𝟏𝟑. 𝟑𝟖
∗ 𝟏𝟎𝟎 = 𝟖𝟖. 𝟐𝟎 ; 

𝟏𝟎𝟔.𝟓𝟗

𝟏𝟏𝟑.𝟑𝟖
∗ 𝟏𝟎𝟎 = 𝟗𝟒. 𝟎𝟏 

𝟏𝟐𝟖. 𝟑𝟓

𝟏𝟏𝟑. 𝟑𝟖
∗ 𝟏𝟎𝟎 = 𝟏𝟏𝟑. 𝟐𝟏 ; 

𝟏𝟏𝟖. 𝟓𝟕

𝟏𝟏𝟑. 𝟑𝟖
∗ 𝟏𝟎𝟎 = 𝟏𝟎 
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Chapter Four  

Stationary 

A stationary process has the property that the mean, 

variance and autocorrelation structure do not change 

over time. 
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1. Strict stationary or strong stationary process: 

Time series Zt is strict stationary if its probability density 

function does not depend on time  i.e pdf of ( 𝒛𝒌 , 𝒛𝒌+𝟏, 𝒛𝒌+𝟐 , … 

, 𝒛𝒌+𝒕) does not dependent on k. 

 E(z) does not dependent on t. 

 Var(z) does not dependent on t. 

 Cov(𝒛𝒕 , 𝒛𝒕+𝟏) dependent on k and does not dependent on t. 

2.Weakly stationary: 

 E(z) does not dependent on t. 

 Cov(𝒛𝒕 , 𝒛𝒕+𝟏) dependent on k and does not dependent on t. 

Time series 𝒛𝒕 is weakly stationary. 
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Non-stationary time series: 

is the time series properties that change over time and 

may not be stationary around mean or around 

variance or both. 

A// Non-stationary time series around mean we call 

this series non stationary around mean if it is 

dependent up on (t) time and we will take the 

difference to achieve stationary. 
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∆𝒛𝒕 =𝒛𝒕 − 𝒛𝒕−𝟏 

       = (𝟏 − 𝜷)  𝒛𝒕  

 𝜷 = back shift operator  

∆𝟐𝒛𝒕 =∆(∆𝒛𝒕) 

       = ∆(𝒛𝒕 − 𝒛𝒕−𝟏) 

     = ∆𝒛𝒕 − ∆𝒛𝒕−𝟏 

     = 𝒛𝒕 − 𝒛𝒕−𝟏 − (𝒛𝒕−𝟏 − 𝒛𝒕−𝟐) 

     = 𝒛𝒕 − 𝟐𝒛𝒕−𝟏 + 𝒛𝒕−𝟐 

     = (𝟏 − 𝟐𝜷 + 𝜷𝟐) 𝒛𝒕 

     = (𝟏 − 𝜷)𝟐𝒛𝒕 

In general  

∆𝒋𝒛𝒕 = (𝟏 − 𝜷)𝒋𝒛𝒕 

 

 



70 

 

 

 

 

 

Ex// discuss the stationary of  

𝒛𝒕 = 𝜶𝟎 + 𝜶𝟏𝒕 + 𝒂𝒕 

Where 𝒂𝒕 are uncorrelated random variable with mean zero and variance 𝜹𝟐. 

Solution: 

𝑬(𝒛𝒕) = 𝜶𝟎 + 𝜶𝟏𝑬(𝒕) + 𝑬(𝒂𝒕) 
           = 𝜶𝟎 + 𝜶𝟏𝝁𝒕 + 𝟎 

𝑬(𝒛𝒕) = 𝝁𝒕 

 

It is not stationary because is dependent up on t 

 

𝒘𝒕 = ∆(𝒛𝒕) = 𝒛𝒕 − 𝒛𝒕−𝟏 
      = 𝜶𝟎+𝜶𝟏𝒕 + 𝒂𝒕 − (𝜶𝟎 + 𝜶𝟏(𝒕 − 𝟏) + 𝒂𝒕−𝟏) 
      = 𝜶𝟎+𝜶𝟏𝒕 + 𝒂𝒕 − 𝜶𝟎 − 𝜶𝟏𝒕 + 𝜶𝟏 − 𝒂𝒕−𝟏 

    𝒘𝒕  = 𝒂𝒕+𝜶𝟏 − 𝒂𝒕−𝟏 

𝑬 𝒘𝒕 = 𝑬(𝒂𝒕) + 𝜶𝟏 − 𝑬(𝒂𝒕−𝟏) 
= 0 + 𝜶𝟏 + 0 

𝑬 𝒘𝒕 = 𝜶𝟏  

Is not depend upon t its stationary 
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Non-stationary time series around variance: 

If the series non-stationary around variance we will use the 

transformation method such that: 

1. Square root transformation. 

2. Log transformation. 

3. Reciprocal Transformation. 

4. Standard deviation transformation. 
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Ex// Discuss the stationary of  

𝑧𝑡 = 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑡 =  𝑎𝑗
𝑡
𝑗=1   

Where (𝑎𝑗) is a sequence of uncorrelated random variable with mean zero and variance 𝛿2 

Solution: 

𝑧𝑡 = 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑡 =  𝑎𝑗

𝑡

𝑗=1

 

𝐸(𝑧𝑡) = 𝑧𝑒𝑟𝑜 

It is not depend upon t  

It is stationary around mean 

𝑉𝑎𝑟(𝑧𝑡) = 𝑉𝑎𝑟(𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑡) = 𝑉𝑎𝑟( 𝑎𝑗

𝑡

𝑗=1

) 

                  =  𝛿2 + 𝛿2 + 𝛿2 + ⋯ + 𝛿2 = 𝑡𝛿2 

It is depend upon t  

It is not stationary  
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Wt = 
𝟏

𝒕
𝒛𝒕 

E(Wt) = 𝑬
𝟏

𝒕
𝒛𝒕  

          = 
𝟏

𝒕
 𝑬(𝒛𝒕) 

         = 
𝟏

𝒕
𝑬 𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 + ⋯+ 𝒂𝒕  

         = 
𝟏

𝒕
 𝟎  

It is stationary around mean 

Var(Wt) = 𝑽𝒂𝒓
𝟏

𝒕
𝒛𝒕  

= (
𝟏

𝒕
)𝟐𝑽𝒂𝒓 𝒛𝒕  

= 
𝟏

𝒕
𝒕𝜹𝟐 = 𝜹𝟐  

It is not depend upon t it is stationary around variance. 
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Autocorrelation function (correlogram) : 

An important guide to the persistence in a time series is given by 

the series of quantities called the sample autocorrelation 

coefficients, which measure the correlation between observations at 

different times. 

 

 

 

 
where ( 𝒀𝟏) is the mean of the first N-1 observations and (𝒀 2) is the 

mean of the last N-1 observations. 

The quantity 𝒓𝒌 is called the autocorrelation coefficient at lag k. The 

plot of the autocorrelation function as a function of lag is also called 

the correlogram. 
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 The covariance between Yt and its value Yt+k separated by k 

intervals of time is called the autocovariance at lag k and is defined 

by :  

 

Thus , the autocorrelation at lag k is : 

 

This implies that:𝝆𝟎=1 
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The most satisfactory estimate of the 𝒌𝒕𝒉 lag autocorrelation is: 
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Ex.4-1 : A series of 10 consecutive Yields from a batch chemical 

process . Find r1 for the first 10 values of batch data : 

 

 

 

𝒀𝒕 𝒀𝒕 − 𝒀  𝒀𝒕+𝟏 − 𝒀  (𝒀𝒕−𝒀 )(𝒀𝒕+𝟏 − 𝒀 ) (𝒀𝒕 − 𝒀 )𝟐 

47 -4 13 -52 16 

64 13 -28 -364 169 

23 -28 20 -560 784 

71 20 -13 -260 400 

38 -13 13 -169 169 

64 13 4 52 169 

55 4 -10 -40 16 

41 -10 8 -80 100 

59 8 -3 -24 64 

48 -3 …. …. 9 

510 0 …. -1497 1896 
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The above calculation is made for illustration only. In 

practice to obtain a useful estimate of autocorrelation 

function , we would need at least fifty observations and 

the estimated autocorrelations rk would be calculated 

for k = 0 , 1 , 2 , …… , K ; where K was not larger than 

say N/4 . 
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Let r(x,y|z) = corr(x,y|z) denote the partial correlation 

coefficient between x and y, adjusted for z (or with z 

held constant). 

Denote: φ2 = corr(xt , xt+2|xt+1) 

φ 3 = corr(xt , xt+3|xt+1 , xt+2)  

φ k = corr(xt , xt+k|xt+1 ,... xt+k-1)  

= partial autocorrelation coefficient at lag k.  

• (PACF): { φ1 , φ2, ...} = { φk , k > 1}  

φ1 = corr(Xt , Xt+1) = ρ1  
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Applying this here, using x = Xt , y = Xt+2 , z = Xt+1 , φ2 

= corr(xt , xt+2|xt+1) = r(x,y|z) , along with ρ1= r(x,z) 

and ρ2 = r(x,y) , yields: 

 

 

Recall that the partial autocorrelation coefficients φk are 

calculated as follows: 
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In general, φk is given as a ratio of determinants 

involving 𝝆𝟏, 𝝆𝟐 ,…, 𝝆𝒌  . The sample partial 

autocorrelation coefficients are given by these formulae, 

but with the ρk replaced by their estimates rk: 
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Ex.4-3: Find the estimated partial autocorrelation form 

the  following information: 

𝒓𝟏=-0.39 , 𝒓𝟐= 0.30 . 

Solution : 

𝝋𝟏 = 𝒓𝟏 = -0.39 
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The random model which using in the time series: 

Autoregressive Moving Averages (ARMA) 

Backshift notation: 

The backward shift operator B is a useful notational 

device when working with time series lags: 

𝑩𝒁𝒕=𝒁𝒕 − 𝟏 

   Some references use L for “lag” instead of B for 

“backshift”.) In other words, B, operating on Zt , has 

the effect of shifting the data back one period. Two 

applications of B to Zt shifts the data back two periods: 

𝑩(𝑩𝒁𝒕)= 𝑩𝟐𝒁𝒕  =𝒁𝒕 − 𝟐 
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4-1 Autoregressive model AR(p) 

Consider the first order autoregressive model, defined 

below:AR(1)- Markov process: 

𝒁𝒕=∅𝟎+ 𝒁𝒕−𝟏∅𝟏+𝒖𝒕 

with ut ∼ WN(0, σ2) and | ∅𝟏| < 𝟏. 

Note that the AR(1) process reduces to white noise in the special 

case that . we assume that the process is stationary, such that 

among others E(Zt) = E(Zt−1) and var(Zt) = var(Zt−1) and use 

this to derive the expectation and variance of the process together 

with its first order autocorrelation coefficient. 
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4-1 Autoregressive model AR(p) 

𝒛𝒕 = ∅𝟏𝒛𝒕−𝟏 + ∅𝟐𝒛𝒕−𝟐 + ∅𝟑𝒛𝒕−𝟑 + ⋯ + ∅𝒑𝒛𝒕−𝒑 + 𝒖𝒕 

𝒖𝒕  ~ 𝑵 (𝟎, 𝜹𝟐) 

We can write this model by use back-shift operator. 

𝒛𝒕 = (∅𝟏𝒛𝒕−𝟏 + ∅𝟐𝒛𝒕−𝟐 + ∅𝟑𝒛𝒕−𝟑 + ⋯ + ∅𝒑𝒛𝒕−𝒑) + 𝒖𝒕 

𝒛𝒕 − ∅𝟏𝒛𝒕−𝟏 − ∅𝟐𝒛𝒕−𝟐 − ∅𝟑𝒛𝒕−𝟑 − ⋯ − ∅𝒑𝒛𝒕−𝒑 = 𝒖𝒕 

𝒛𝒕(𝟏 − ∅𝟏𝜷 − ∅𝟐𝜷𝟐 − ∅𝟑𝜷𝟑 − ⋯ − ∅𝒑𝜷𝒑) = 𝒖𝒕  

Let 𝟏 − ∅𝟏𝜷 − ∅𝟐𝜷𝟐 − ∅𝟑𝜷𝟑 − ⋯ − ∅𝒑𝜷𝒑 =  ∅𝜷 

∅(𝜷)𝒛𝒕 = 𝒖𝒕 
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Markov model AR(1) 

𝒛𝒕 = ∅𝟏𝒛𝒕−𝟏 + 𝒖𝒕 

𝒛𝒕 − ∅𝟏𝒛𝒕−𝟏 = 𝒖𝒕 

𝒛𝒕 𝟏 − ∅𝟏𝜷 = 𝒖𝒕 

Let 𝟏 − ∅𝟏𝜷 =  ∅𝜷    , Then (∅𝜷)𝒛𝒕= 𝒖𝒕 

Discuss the stationary of Markov model AR(1): 

𝒛𝒕 = ∅𝟏𝒛𝒕−𝟏 + 𝒖𝒕         𝒖𝒕~𝑵 𝟎 , 𝜹𝟐  

𝑬  𝒛𝒕 = 𝑬 ∅𝟏𝒛𝒕−𝟏 + 𝑬 𝒖𝒕  

𝝁𝒁 = ∅𝟏𝝁𝒁 + 𝟎 

𝝁𝒁 − ∅𝟏𝝁𝒁 = 𝟎 

𝝁𝒁 𝟏 − ∅𝟏 = 𝟎 

𝝁𝒁 =
𝟎

𝟏 − ∅𝟏
= 𝟎 

It is stationary around mean 
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𝒛𝒕 = ∅𝟏𝒛𝒕−𝟏 + 𝒖𝒕          

𝑽𝒂𝒓  𝒛𝒕 = 𝑽𝒂𝒓 ∅𝟏𝒛𝒕−𝟏 + 𝑽𝒂𝒓 𝒖𝒕  

𝜹𝒛
𝟐 =  ∅𝟏

𝟐𝜹𝒛
𝟐 + 𝜹𝒖

𝟐  

𝜹𝒛
𝟐 − ∅𝟏

𝟐𝜹𝒛
𝟐 = 𝜹𝒖

𝟐  

𝜹𝒛
𝟐 𝟏 − ∅𝟏

𝟐 = 𝜹𝒖
𝟐  

𝜹𝒛
𝟐 = 

𝜹𝒖
𝟐

𝟏− ∅𝟐  it is stationary around variance 

∅ < 𝟏               −𝟏 < ∅ < 𝟏 
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Auto covariance function and Auto correlation function 

𝒛𝒕 = ∅𝟏𝒛𝒕−𝟏 + 𝒖𝒕  We will multiply by  𝒛𝒕+𝒌        

𝒛𝒕 ∗ 𝒛𝒕+𝒌 = ∅𝟏𝒛𝒕−𝟏 ∗ 𝒛𝒕+𝒌 + 𝒖𝒕 ∗ 𝒛𝒕+𝒌 

𝑬(𝒛𝒕 ∗ 𝒛𝒕+𝒌) = 𝑬(∅𝟏𝒛𝒕−𝟏 ∗ 𝒛𝒕+𝒌) + 𝑬(𝒖𝒕 ∗ 𝒛𝒕+𝒌) 

Cov(𝒛𝒕∗ 𝒛𝒕+𝒌) = ∅𝟏𝒄𝒐𝒗(𝒛𝒕−𝟏 ∗ 𝒛𝒕+𝒌) +0 

Auto correlation function for AR(1) 

* 𝜸𝒌= ∅𝟏𝜸𝒌−𝟏   + ÷ 𝜸𝟎    

𝝆𝒌 = ∅𝟏𝝆𝒌−𝟏  

𝜸 = 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 

𝜸𝟎 = 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆   

 

  



Moving Average model MA(q): 

  The moving average model is a common approach for 

modelling univariate time series. The notation MA(q) 

refers to the moving average model of order q , then 

MA(q)-process is:  

 

A moving average is commonly used with time series data 

to smooth out short-term fluctuations and highlight 

longer-term trends or cycles. 

𝐘𝐭 = 𝛉𝟎 + 𝐮𝐭 − 𝛉𝟏𝐮𝐭−𝟏 − 𝛉𝟐𝐮𝐭−𝟐 − ⋯ − 𝛉𝐪𝐮𝐭−𝐪 

Where ut ∼ WN(0, σ2) are white noise error terms and 

𝛉𝟎, 𝛉𝟏, … , 𝛉𝐪 are the parameters of the model . 

 

This can be written of the backshift operator B as: 

𝐘𝐭 = 𝛉𝟎 + 𝟏 − 𝛉𝟏𝐁 − 𝛉𝟐𝐁𝟐 − ⋯ − 𝛉𝐪 𝐁𝐪 𝐮𝐭 
                                        

https://en.wikipedia.org/wiki/Univariate
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Backshift_operator


The moving average model of order q is defined as. 

𝒀𝒕 = 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏 − 𝜽𝟐𝒖𝒕−𝟐 − 𝜽𝟑𝒖𝒕−𝟑 − ⋯ − 𝜽𝒒𝒖𝒕−𝒒 

𝒀𝒕 = 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏                          , … … ,   𝒖𝒕  ~ 𝑾𝑵(𝟎, 𝝈𝟐) 

We can written this model by use back shift operator 

𝒀𝒕 = 𝟏 − 𝜽𝟏𝑩 𝒖𝒕  

𝒍𝒆𝒕 𝟏 − 𝜽𝟏𝜷 =  𝜽𝜷 

𝒀𝒕 = 𝜽𝜷𝒖𝒕 

Auto covariance for MA(1) 

(𝒀𝒕 = 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏+  ∗ 𝒀𝒕+𝒌  

𝒀𝒕𝒀𝒕+𝒌 = 𝒖𝒕𝒀𝒕+𝒌 − 𝜽𝟏𝒖𝒕−𝟏𝒀𝒕+𝒌 

𝑬(𝒀𝒕𝒀𝒕+𝒌) = 𝑬(𝒖𝒕𝒀𝒕+𝒌) − 𝜽𝟏𝑬(𝒖𝒕−𝟏𝒀𝒕+𝒌) 

𝜸𝒌 = 𝜸𝒖𝒛(𝒌) − 𝜽𝟏𝜸𝒖𝒛(−𝒌) 



Ex. What are the properties (mean, variance, covariance and 

autocorrelation) of MA(2)?  

Sol.: Assuming, without loss of generality, that 𝜽𝟎 = 𝟎 ; then MA(2) 

process is written as:  

𝒀𝒕 = 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏 − 𝜽𝟐𝒖𝒕−𝟐 

   As it is a combination of a zero mean white noise, then: 

𝑬(𝒀𝒕) = 𝑬 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏 − 𝜽𝟐𝒖𝒕−𝟐 = 𝟎 = 𝒎𝒆𝒂𝒏 

  The variance of Yt is:  𝜸𝟎 = 𝒗𝒂𝒓 𝒀𝒕 = 𝒗𝒂𝒓 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏 − 𝜽𝟐𝒖𝒕−𝟐

= 𝟏 + 𝜽𝟏
𝟐 + 𝜽𝟐

𝟐 𝝈𝟐  

   It is easy to calculate the covariance of Yt and Yt+k . We get: 

      𝜸𝒌= 𝒄𝒐𝒗 𝒀𝒕, 𝒀𝒕+𝒌 = 𝑬(𝒀𝒕𝒀𝒕+𝒌)    

= 𝑬 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏 − 𝜽𝟐𝒖𝒕−𝟐 . 𝒖𝒕+𝒌 − 𝜽𝟏𝒖𝒕+𝒌−𝟏 − 𝜽𝟐𝒖𝒕+𝒌−𝟐       

                   𝜸𝒌   = (𝟏 + 𝜽𝟏
𝟐 + 𝜽𝟐

𝟐)𝝈𝟐             for k = 0, 

                         = −𝜽𝟏 +𝜽𝟏 𝜽𝟐 𝝈𝟐              for k = ±1,                                

                         = −𝜽𝟐 𝝈𝟐                               for k = ±2,  

                         = 𝟎                                         for |k| > 2, 



This shows that the autocovariances depend on lag, but not on time. 

Dividing γk by γ0 we obtain the autocorrelation function: 

  𝝆𝒌  =  𝟏                              for k = 0, 

         =
−𝜽𝟏+𝜽𝟏𝜽𝟐

𝟏+𝜽𝟏
𝟐+𝜽𝟐

𝟐                   for k = ±1, 

         =
−𝜽𝟐

𝟏+𝜽𝟏
𝟐+𝜽𝟐

𝟐                    for k = ±2, 

         =  𝟎                              for |k|> 2.                                            



Autoregressive Moving Average (ARMA) model :  

The process {Yt ; t ∈ Z} is an autoregressive moving average process 

of order (p, q), denoted with  Yt ∼ ARMA(p, q), if  

 











EX/6.10/ write the formula of ARMA(2,3) model by use back 

shift operator . 
 

Solution: 

 

𝒀𝒕 = ∅𝟏𝒀𝒕−𝟏 + ∅𝟐𝒀𝒕−𝟐 + 𝒖𝒕 − 𝜽𝟏𝒖𝒕−𝟏 − 𝜽𝟐𝒖𝒕−𝟐 − 𝜽𝟑𝒖𝒕−𝟑 

𝒀𝒕(𝟏 − ∅𝟏𝜷 − ∅𝟐𝜷𝟐) = 𝒖𝒕(𝟏 − 𝜽𝟏𝜷 − 𝜽𝟐𝜷𝟐 − 𝜽𝟑𝜷𝟑) 

Let (𝟏 − ∅𝟏𝜷 − ∅𝟐𝜷𝟐) = ∅𝜷 
(𝟏 − 𝜽𝟏𝜷 − 𝜽𝟐𝜷𝟐 − 𝜽𝟑𝜷𝟑) = 𝜽𝜷 
 

𝒀𝒕∅𝜷 = 𝒖𝒕𝜽𝜷 
 


