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1 Vector Spaces

1.1 Fields

Definition 1.1. A field is a set F on which we have two binary operations:
+ : F× F → F and · : F× F → F, satisfying the following axioms:

(F1) (Associativity of addition) For all a, b, c ∈ F, a+ (b+ c) = (a+ b) + c.

(F2) (Commutativity of addition) For all a, b ∈ F, a+ b = b+ a.

(F3) (Existence of zero) There exists 0 ∈ F such that, for all a ∈ F, a+ 0 =
a = 0 + a.

(F4) (Existence of additive inverses) For each a ∈ F, there exists −a ∈ F
such that a+ (−a) = 0 = −a+ a.

(F5) (Associativity of multiplication) For all a, b, c ∈ F, a(bc) = (ab)c.

(F6) (Commutativity of multiplication) For all a, b ∈ F, ab = ba.

(F7) (Existence of identity) There exists 1 ∈ F such that , for all a ∈ F,
a1 = a = 1a.

(F8) (Existence of multiplicative inverses) For each a ∈ F , a ̸= 0, there
exists a−1 ∈ F such that aa−1 = 1 = a−1a.

(F9) (Distributivity) For all a, b, c ∈ F, a(b + c) = ab + ac and (a + b)c =
ac+ bc.

The elements of F may be called numbers or scalars, the operations +
and · will be called addition and multiplication, respectively.

Example 1.2.

Q (the rationals), R (the reals), and C (the complex numbers) are fields,
while the integers Z do not form a field. Can you see why?

1.2 Finite fields

In this course we will also need finite fields. By this we mean a field F which
is finite as a set. So there are only finitely many numbers in this number
system!
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Theorem 1.3. If F is a finite field then |F| = pf for some prime integer p
and a positive integer f . Furthermore, for each order pf , there is exactly one
field of that order.

This theorem tells us how many finite fields exist and what are the possible
orders. However, we also need to know what the fields are. We will write Fq

for the only field of order (or size) q = pf .

1.2.1 Prime order

If the order of the field is p (that is, f = 1) then the field Fp is simply
Zp, the integers modulo p. This means that Fp = {0, 1, . . . , p − 1} and the
operations of addition and multiplication on Fp are the usual addition and
multiplication supplemented by subtracting a suitable multiple of p in order
to bring the result within the interval [0, p− 1].

Example 1.4. Suppose we need to work with F5. Then F5 = {0, 1, 2, 3, 4},
and here are examples of addition:

2 + 2 = 4,

4 + 3 = 7− 5 = 2.

In the first example, the sum, 4 is already in the range, so we do not need to
subtract 5. In the second example, we subtract 5 from the sum, 7, in order
to bring the result into the range.

Here also are the examples of multiplication:

2 · 2 = 4,

4 · 4 = 16− 5− 5− 5 = 1.

In the first example, we are in the range, so we do not subtract any 5s. In
the second example, we need to subtract 5 three times in order for the result
to be in the target interval.

1.2.2 Non-prime order

In the non-prime case the above method does not work! If you need, for
example, the field F4 of order 4 then you cannot simply take Z4, the integers
modulo 4. This is not a field! Instead you can take F4 = {0, 1, a, b}, where
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addition and multiplication is given by the following tables.

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

· 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

1.3 Vector Spaces

The following is the main definition of the course.

Definition 1.5. Suppose F is a field. A vector space over F is a set V
together with two operations: + : V × V → V and · : F× V → V , satisfying
the following axioms:

(VS1) (Associativity of addition) For all u, v, w ∈ V , u+(v+w) = (u+v)+w.

(VS2) (Commutativity of addition) For all u, v ∈ V , u+ v = v + u.

(VS3) (Existence of zero vector) There exists 0 ∈ V such that v+0 = 0+v+0
for all.

(VS4) (Existence of additive inverses) For each u ∈ V , there exists −u ∈ V
such that u+ (−u) = 0 = −u+ u.

(VS5) (Associativity of multiplication) For all a, b ∈ F and u ∈ V , a(bu) =
(ab)u.

(VS6) (Distributivity) For all a, b ∈ F and u, v ∈ V , a(u + v) = au + av and
(a+ b)v = av + bv.

(VS7) (Identity multiplication) For all u ∈ V , 1v = v.

We refer to the elements of V as vectors, as opposed to scalars, which
are the numbers, that is, the elements of F.

Note that the product of a scalar and a vector is always to be written in
this order: first the scalar and then the vector; never the other way around.
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The operations + and · will be called vector addition and scalar mul-
tiplication, respectively.

Example 1.6. Let R be the field of real numbers, V = R2 = {(x, y) : x, y ∈
R}.
(x1, y1) = (x2, y2) if and only if x1 = x2 and y1 = y2 We define the vector
addition by (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) [coordinate-wise addition]
and scalar multiplication by a(x1, y1) = (ax1, ay1) [coordinate-wise scalar
multiplication]. Show that R2 is a vector space over R.
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Example 1.7. Let R be the field of real numbers, V = R2 = {(x, y) : x, y ∈
R}.
(x1, y1) = (x2, y2) if and only if x1 = x2 and y1 = y2 We define the vector
addition by (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) [coordinate-wise addition]
and scalar multiplication by a(x1, y1) = (ax1, a

2y1). Test whether R2 is a
vector space over R.

Example 1.8. Let F be any field and n ∈ Z+, Fn = {(x1, · · · , xn) : xi ∈
F for i = 1, · · · , n}.
(x1, · · · , xn) = (y1, · · · , yn) if and only if xi = yi for i = 1, · · · , n.
We define the vector addition by (x1, · · · , xn)+(y1, · · · , yn) = (x1+y1, · · · , xn+
yn) [coordinate-wise addition]
and scalar multiplication by a(x1, · · · , xn) = (ax1, · · · , axn) [coordinate-wise
scalar multiplication]. Show that Fn is a vector space over F.

Example 1.9. Let F be any field and m,n ∈ Z+, Mmn(F) = {A : A is m−
by − n matrix in F}.
Let + be the sum of two matrices and · be the multiplication of a matrix by
a constant. Show that Mmn(F) is a vector space over F.

Example 1.10. Let F be any field and n ∈ Z+, Pn(F) = {a0 + a1x + · · · +
anx

n : ai ∈ F for i = 0, 1, · · · , n}.
a0 + a1x + · · · + anx

n = b0 + b1x + · · · + bnx
n if and only if ai = bi for

i = 0, 1, · · · , n.
We define the vector addition by (a0+a1x+· · ·+anx

n)+(b0+b1x+· · ·+bnx
n) =

(a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n [coordinate wise addition]

and scalar multiplication by a(a0+a1x+· · ·+anx
n) = aa0+aa1x+· · ·+aanx

n

[coordinate wise scalar multiplication]. Show that Pn(F) is a vector space over
F.
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Example 1.11. Let X ̸= ∅ and V = {f : f : X → R is a function}. The
vector addition is defined as the sum of two functions (f+g)(x) = f(x)+g(x)
for all x ∈ X. The scalar multiplication is defined by (af)(x) = af(x) for
all x ∈ X. Show that V is a vector space over R.

Example 1.12. Let I be any interval subset of R and C(I) = {f : f : I →
R is a continuous function}. Show that C(I) is a vector space over R .

Example 1.13. Let I be any interval subset of R, n ∈ Z+ and Cn(I) = {f :
f : I → R is a differentiable function whose nth−derivative is continuous}.
Show that Cn(I) is a vector space over R .

Example 1.14 (Subsets of a set). The set 2Ω of all subsets of a set Ω is a
vector space over F2. The addition is provided by the operation of symmetric
difference (often denoted by △). Recall, that for two subsets A and B of Ω,
the symmetric difference A△B of A and B consists of all elements that are
in A, but not in B, and all elements that are in B, but not in A. So

A△B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

How do we define multiplication with scalars?

1.4 Basic properties

Here are some basic properties of vector spaces.

Theorem 1.15 (Elementary properties). Suppose V is a vector space over
a field F. Then the following hold:

(1) (Cancellation in sums) For u, v, w ∈ V , if u+ v = u+ w then v = w.

(2) For all u ∈ V , 0u = 0.

(3) For all u ∈ V , (−1)u = −u.

(4) Also, for all a ∈ F, a0 = 0.
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Theorem 1.16. Suppose V is a vector space over a field F. Then

(1) The zero vector is unique.

(2) For each u ∈ V , −u is unique.

Theorem 1.17. Suppose V is a vector space over F. Then:

(1) For a ∈ F and u ∈ V , if au = 0 then either a = 0 or u = 0.

(2) (Cancellation in products)

(a) For 0 ̸= a ∈ F and u, v ∈ V , if au = av then u = v.

(b) Also, for a, b ∈ F and 0 ̸= u ∈ V , if au = bu then a = b.
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1.5 Subspaces

Definition 1.18. Suppose V is a vector space over F. A subset U ⊆ V is
a subspace if it is a vector space over F in its own right with respect to
addition and multiplication inherited from V .

Definition 1.19. Suppose V is a vector space over F. We say that a subset
U ⊆ V is closed for addition if, for all u, v ∈ U , u+ v ∈ U .

Definition 1.20. Suppose V is a vector space over F. A subset U ⊆ V is
closed for multiplication with scalars if, for all u ∈ U and all a ∈ F,
au ∈ U .

Theorem 1.21 (Subspace criterion I). Suppose V is vector space over F. A
nonempty subset U ⊆ V is a subspace if and only if U is closed for addition
and multiplication with scalars.

Note that the empty subset U = ∅ is not a subspace, because (VS3) fails!!
There is no zero vector in this U . This is why we have to exclude the empty
set in the above theorem.

The two conditions in the theorem can be replaced by a single condition.

Theorem 1.22 (Subspace criterion, II). A non-empty subset U of a vector
space V over F is a subspace of V if and only if, for all u, v ∈ U and all
a ∈ F, we have that au+ v ∈ U .
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Example 1.23. In every vector space V , the subset U = V is obviously a
subspace. We say that a subspace U ⊆ V is proper if U ̸= V , that is, U is
strictly smaller than V .

Hence U = V is the only subspace of V that is not proper.
Similarly, in every vector space V , the subset {0} is a subspace. This

subspace is called the trivial subspace. We will often write 0 for the trivial
subspace.

Example 1.24. In R2, the subset U = {(x, y) | y = 2x} is a subspace.

Example 1.25. In R2, the subset U = {(x, y) | y = mx; m ∈ R} is a
subspace.

Example 1.26. In R3, the subset U = {(x, y, 0) | x, y ∈ R} is a subspace.

Example 1.27. In R3, the subset U = {(x, y, 1) | x, y ∈ R} is not a subspace.
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Example 1.28 (R2 and R3). In the plane R2, the subspaces are:

(1) the trivial subspace containing only the origin 0;

(2) the straight lines through the origin; and

(3) the improper subspace—the entire plane.

Similarly, in the 3D space R3, we have the following subspaces:

(1) the trivial subspace;

(2) the straight lines through the origin;

(3) the planes through the origin; and

(4) the improper subspace—the entire space R3.

Example 1.29. In R4, let U = {(x, y, z, w) | xw = 0}. Is U a subspace of
R4? Explain.

Example 1.30. In M2×2(R), the subset U =

{[
a b
c d

]
| a+ b = c

}
is a sub-

space.

1.6 Intersection of subspaces

Theorem 1.31 (Intersection of subspaces). If {Ui | i ∈ I} is a collection of
subspaces of a vector space V , then the intersection W := ∩i∈IUi is again a
subspace of V .
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Example 1.32. In P2(R), let U1 = {a + bx + cx2 | a + 2b − c = 0} and
U2 = {a+ bx+ cx2 | a+ b+ 2c = 0}. Find U1 ∩ U2.

Note that the union of two subspaces need not be a subspace in general.
For example, in R2, if U1 = {(x, y) | y = x} and U2 = {(x, y) | y = −x},
then U1 ∪ U2 is not a subspace.

1.7 Generated subspace

Definition 1.33 (Generated subspace). For a vector space V and a subset
X ⊆ V , the subspace generated by X (denoted ⟨X⟩) is the unique minimal
subspace of V containing X.

If X = A ∪ B ∪ C, say, we may write ⟨A,B,C⟩ instead of ⟨A ∪ B ∪ C⟩.
Also, we will write u in place {u}.

Example 1.34. If the set X consists of a single vector, u, then every sub-
space containing u also contains all multiples of u. That is, ⟨u⟩ = {au | a ∈
F}.

For example, if V = P3(R) and u = x+1 then ⟨u⟩ contains polynomials 0,
x+1, 1

2
x+ 1

2
, −3x−3, and in fact, ⟨u⟩ = {a(x+1) | a ∈ R} = {ax+a | a ∈ R}.
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Example 1.35. Similarly, if X = {u, v} then ⟨u, v⟩ = {au+ bv | a, b ∈ F}.

For example, if V = R2 and u = (2, 0) and v = (0, 4), then ⟨u, v⟩ =
{a(2, 0) + b(0, 4) | a, b ∈ R} = {(2a, 4b) | a, b ∈ R}. For each (x, y) ∈ R2,
(x, y) = x

2
(2, 0) + y

4
(0, 4) which implies (x, y) ∈ ⟨u, v⟩. Thus, ⟨u, v⟩ = R2.

Example 1.36. If F = F2 and V = 2Ω, where Ω = {red, blue, yellow, green},
and u = {red, yellow} and v = {blue, yellow, green}, then find ⟨u, v⟩.

1.8 Sum of subspaces, direct sum

Definition 1.37 (Sum of subspaces). Suppose U and W are two subspaces
of a vector space V . Then we define U +W = {u+ w | u ∈ U,w ∈ W}.

Theorem 1.38. If U and W are subspaces of a vector space V , then U +W
is also a subspace of V .

Example 1.39. In R2, let U = {(x, 0) | x ∈ R} and W = {(0, y) | y ∈ R}.
Find U +W .
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Example 1.40. In R3, let U = {(x, y, 0) | x, y ∈ R} and W = {(0, y, z) |
y, z ∈ R}. Find U +W .

Definition 1.41 (Direct sum). Suppose U and W are subspaces of a vector
space V . We say that D = U +W is the direct sum of U and W (denoted
D = U ⊕W ) if for every d ∈ D there exists only one choice of u ∈ U and
w ∈ W such that d = u+ w.

Example 1.42. In Example 1.39, R2 is the direct sum of U and W . That
is, R2 = U ⊕ W . However, in Example 1.40 R3 is not the direct sum of U
and W
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Theorem 1.43 (Direct sum criterion). For subspaces U and W of a vector
space V , we have that D = U +W is the direct sum of U and W if and only
if U ∩W = 0.

Example 1.44. In R2, let U = {(x, y) | y = x} and W = {(x, y) | y = −x}.
Show that R2 = U ⊕W .

1.9 Linear combinations and independence

Definition 1.45. Let S = {u1, u2, · · · , uk} be a set of vectors in a vector
space V over a field F. A vector u in V is called a linear combination of
the vectors in S if

u = a1u1 + a2u2 + · · ·+ akuk

for some a1, a2, · · · , ak ∈ F.
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Example 1.46. In R2, test whether the vector u = (1, 2) is a linear combi-
nation of the vectors in S = {(1, 1), (1,−1)} or not.

Example 1.47. In R3, show that the vector u = (1, 2, 3) is a linear combi-
nation of the vectors in S = {(1, 1, 1), (−1, 0, 1)}.

Definition 1.48. Let S = {u1, u2, · · · , uk} be a set of vectors in a vector
space V over a field F. The set S spans V , or V is spanned by S (denoted
V = ⟨S⟩), if every vector in V is a linear combination of the vectors in S.

Example 1.49. In R2, let S = {(1, 2), (0,−3)}. Show that R2 = ⟨S⟩.
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Example 1.50. In R3, let S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Show that R3 =
⟨S⟩.

Definition 1.51 (Finite-dimensional spaces). A vector space V over a field
F is called finite-dimensional if there exist a finite subset S of V such that
V = ⟨S⟩. Otherwise, we call the vector space infinite dimensional.

Definition 1.52. Let S = {u1, u2, · · · , uk} be a set of distinct vectors in a
vector space V over a field F. Then S is said to be linearly dependent if
there exist scalars a1, a2, · · · , ak ∈ F not all zero, such that

a1u1 + a2u2 + · · ·+ akuk = 0.

Otherwise, S is called linearly independent. That is, S is linearly inde-
pendent if a1u1 + a2u2 + · · ·+ akuk = 0 holds only when

a1 = a2 = · · · = ak = 0.

Example 1.53. In R3, let S = {(1, 2, 0), (−1, 0, 1), (0, 1, 1)}. Show that S is
linearly independent.
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Example 1.54. In P2(R), let S = {2 + x+ x2, x+ 2x2, 2 + 2x+ 3x2}. Test
whether S is linearly dependent or linearly independent.

Theorem 1.55. Let S = {u1, u2, · · · , un} be a set of nonzero vectors in a
vector space V over a field F. Then S is linearly dependent if and only if one
of the vectors uj is a linear combination of the preceding vectors in S.

Example 1.56. In R3, let S = {(1, 2,−1), (1,−2, 1), (−3, 2,−1), (2, 0, 0)}.
Test whether S is linearly dependent or not.
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1.10 Bases

Definition 1.57 (Basis). A set of vectors S = {u1, u2, · · · , uk} in a vector
space V over a field F is called a basis for V if S spans V (that is V = ⟨S⟩)
and S is linearly independent.

Theorem 1.58 (Existence of bases). Every vector space has a basis.

Example 1.59. In R2, let S = {(1, 0), (0, 1)}. Then S is a basis for R2,
called the standard (natural) basis for R2.

Example 1.60. In R3, let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then S is a basis
for R3, called the standard (natural) basis for R3.

Example 1.61. In P2(R), let S = {1, x, x2}. Then S is a basis for P2(R),
called the standard (natural) basis for P2(R).

Example 1.62. The set S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis

for M2×2(R), called the standard (natural) basis for M2×2(R).

Example 1.63. Show that the set U = {1+x2,−1+x, 2+2x} is a basis for
P2(R).

Theorem 1.64. If S = {u1, u2, · · · , un} is a basis for a vector space V ,
then every vector in V can be written in one and only one way as a linear
combination of the vectors in S.
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Theorem 1.65. If S = {u1, u2, · · · , un} is a set of nonzero vectors spanning
a vector space V , then S contains a basis T for V .

Theorem 1.66. If S = {u1, u2, · · · , un} is a basis for a vector space V and
T = {v1, v2, · · · , vr} is a linearly independent set of vectors in V , then n ≥ r.

Corollary 1.67. If S = {u1, u2, · · · , un} and T = {v1, v2, · · · , vm} are bases
for a vector space V , then n = m.

Definition 1.68. The dimension of a nonzero vector space V over a field
F is the number of vectors in a basis for V . We often write dim V (or
dimFV ) for the dimension of V . We also define the dimension of {0} to be
zero.
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Example 1.69.

1. dim R2 = 2.

2. dim Rn = n.

3. If F is any field, then dimFFn = n.

4. dimRC2 = 4.

5. dim Pn(R) = n+ 1.

Theorem 1.70. If S is a linearly independent set of vectors in a finite-
dimensional vector space V , then there is a basis T for V which contains
S.

Example 1.71. Find a basis for R3 containing the vectors (1, 0, 1) and
(0,−1, 1).

Theorem 1.72. Let V be an n−dimensional vector space.

1. If S = {u1, u2, · · · , un} is a linearly independent set of vectors in V ,
then S is a basis for V .

2. If S = {u1, u2, · · · , un} spans V , then S is a basis for V .

Example 1.73. Show that the set S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} is a basis
for R3.
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Theorem 1.74. Suppose U is a subspace of a finite-dimensional vector space
V . Then

1. dimU ≤ dimV .

2. If dimU = dimV then U = V .

1.11 Dimension of the sum of subspaces

Theorem 1.75 (Dimension of sum). Suppose V is a vector space and suppose
U and W are finite-dimensional subspaces of V . Then

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Example 1.76. In R3, let U = {(x, y, z) | z = x+ 2y} and W = {(x, y, z) |
x = −y}. Find dim(U +W ) and U +W .

Theorem 1.77. Suppose U and W are finite-dimensional subspaces of a
vector space V . Let S = U +W . Then S = U ⊕W if and only if dimS =
dimU + dimW .
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1.12 Coordinates

Definition 1.78. Let S = {u1, u2, · · · , un} be a basis for a vector space V
over a field F. Then every vector u in V can be written as u = a1u1+a2u2+
· · ·+anun, where a1, a2, · · · , an ∈ F. The vector X = (a1, a2, · · · , an) is called
a coordinate vector of u relative to the basis S.

Example 1.79. In P2(R), find the coordinate vector of u = 3 − x2 relative
to the basis S = {3,−1 + x, x2}.

Definition 1.80. Let S = {u1, u2, · · · , un} and S∗ = {u∗
1, u

∗
2, · · · , u∗

n} be
bases for a vector space V over a field F. Then every vector ui ∈ S can be
written as a linear combination of the vectors in S∗. That is,
u1 = a11u

∗
1 + a12u

∗
2 + · · ·+ a1nu

∗
n,

u2 = a21u
∗
1 + a22u

∗
2 + · · ·+ a2nu

∗
n,

...

un = an1u
∗
1 + an2u

∗
2 + · · · + annu

∗
n. Let P =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

an1 an2 · · · ann

. Then P

is called a transition matrix from the basis S to the basis S∗.

Example 1.81. Find the transition matrix from the basis S = {(2, 3), (0, 3)}
for R2 to the basis S∗ = {(−1, 0), (3, 3)}.

Example 1.82. Let P =

[
1√
5

2√
5

− 2√
5

1√
5

]
be a transition matrix from the basis

S = {(2, 1), (0, 3)} for R2 to the basis S∗ = {u∗
1, u

∗
2}. Find u∗

1 and u∗
2.
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Theorem 1.83. Let S and S∗ be two bases for a fdvs V over a field F. Let
P be a transition matrix from S to S∗. If X is a coordinate vector of u ∈ V
with respect to S, then X∗ = XP is a coordinate vector of u with respect to
S∗.

Theorem 1.84. Let S and S∗ be bases for a vector space V . If there exist
a matrix P = (pij) such that for any u ∈ V , the vector coordinate of u is
X and X∗ relative to S and S∗, respectively, and X∗ = XP , then P is a
transition matrix from S to S∗.

Theorem 1.85. Let S, S∗ and S∗∗ be bases for a vector space V . Let P be a
transition matrix from S to S∗ and Q be a transition matrix from S∗ to S∗∗.
Then PQ is a transition matrix from S to S∗∗.

Theorem 1.86. Let S and S∗ be bases for a vector space V . If P is a
transition matrix from S to S∗, then P−1 is a transition matrix from S∗ to
S.
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