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1 Vector Spaces

2 Linear Transformations

Linear transformations, elementary properties of linear transformations, ker-
nel and injectivity, rank plus nullity, surjectivity, isomorphisms.

2.1 Linear Transformations

Definition 2.1 (Linear transformation). Let U and V be vector spaces over
the same field F. A function T : U — V is called a linear transformation

if:
(L1) for all u,v € U, we have T'(u+v) = T(u) + T(v);
(L2) for allu € U and a € F, we have T'(au) = aT'(u).

Example 2.2. Let T : R?* — R? defined by T(x,y,2) = (v +vy,z + z). Show
that T is a linear transformation.

Example 2.3. Let T : R?* — R? defined by T(z,y) = (x + 1,2+ y). Test
whether T is a linear transformation or not.



Example 2.4 (Linear function). In Calculus, we call a function f: R — R
linear if f is given by the formula y = ax 4+ b. Is there a relation between
these functions and the linear transformation that we introduced?

Example 2.5. Let T : C'(a,b) — C(a,b) defined by T(f) = f'. Show that

T is a linear transformation.

Example 2.6. Let U be any vector space over F. Let T : U — U defined by
T(u) =wu for allu € U. Show that T is a linear transformation (called the
identity transformation).

Example 2.7. Let U and V' be vector spaces over F. LetT : U — V defined
by T'(u) = Oy for all w € U. Show that T is a linear transformation (called
the zero transformation).



Example 2.8. Suppose U = 2% and V = 22 where A is a subset of €.
Define a function T : U — V wia T(A) = AN A for each vector-subset A.
This is a linear transformation.

Just like with the subspace test, there is an easier, one-condition check
of linearity.

Theorem 2.9 (Linearity check). A function T : U — V is a linear trans-
formation if and only if for all u,v € U and all a € F, we have T'(au + v) =
al'(u) + T (v).

Theorem 2.10. Suppose T': U — V' s a linear transformation. Then
(1) T(Oy) = Oy;
(2) T(—u) = =T (u) for allu € U;
(3) T(u—v)=T(u)—T(v) for all u,v € U.



Theorem 2.11. Let U and V be finite dimensional vector spaces over F, and
let S = {uy, -+ ,u,} be a basis for U. Then for any set {vy,--- ,v,} of n
vectors (not necessarily distinct) in'V', there is a unique linear transformation
T:U —V such that T(u;) =v; fori=1,--- n.

Example 2.12. Let S = {(1,0),(2,1)} be a basis for R?. Find a linear

transformation T : R* — Py(R) such that T(1,0) = 14z and T(2,1) = z—2?.

Definition 2.13. Let U and V' be vector spaces over F. For any linear
transformations S, T : U — V and r € F, we define S +T : U — V by

(S+T)(u) = S(u)+T(u) forallu € U and rT : U — V by (rT)(u) = rT(u)
forallu e U.



Example 2.14. Let S,T : R? — R? be linear transformations defined by
T(xz,y) = (z,2y) and S(z,y) = (y,x). Find 2T, S+ T and 3T — 48S.

Theorem 2.15. Let U and V' be vector spaces over F. For any linear trans-
formations S, T : U — V andr € F, S+T and T are linear transformations.

Definition 2.16. The set of all linear transformations from U to V is de-
noted by L(U, V).

Remark 2.17. Let U and V' be vector spaces over F. Then L(U,V) is a
vector space over F.



2.2 Kernel and Image of a Linear Transformation

Definition 2.18. Suppose U and V' be vector spaces over F and T € L(U, V).
(1) The kernel of T', denoted by Ker T, is the set
KerT ={u e U |T(u) = 0}.
(2) The image (range) of T, denoted by Im T, is the set
ImT ={veV]|v=T(u) for someuwec U} ={T(u) |ueU}.

Example 2.19. Let T € L(R? R?) defined by T(x,y,2) = (x +y + z,0).
Find KerT and ImT.

Example 2.20. Let T € L(R* R?) defined by T(x,y) = (y,x). Find KerT
and ImT.

Theorem 2.21. Suppose U and V' be vector spaces over F and T € L(U,V).
Then

(1) KerT is a subspace of U.
(2) ImT is a subspace of V.



Theorem 2.22. Let U and V be vector spaces over F and T € L(U,V).
Then T is one-to-one if and only if KerT = {0}.

Remark 2.23. Let U and V' be vector spaces over F and T € L(U,V'). Then
T is onto if and only if ImT =V.

Definition 2.24. Let U and V be vector spaces over F and T € L(U,V).

(1) If KerT is a finite dimensional subspace of U, then the dimension of
KerT is called the nullity of T', and denoted by n(T) (or dim KerT ).

(2) If ImT is a finite dimensional subspace of V', then the dimension of
ImT is called the rank of T, and denoted by r(T) (or dim ImT ).

Example 2.25. In Example 2.19, n(T) = 2 and r(T) = 1, while in Example
2.20, n(T) =0 and r(T) = 2.

Theorem 2.26 (Rank+nullity). Suppose T € L(U,V) and suppose that
dimU < oo. Then dim ImT + dim KerT = dim U.

Example 2.27. Find a linear transformation T € L(R?* R?) such that {(1,2)}
15 a basis for ImT.



Example 2.28. Find a linear transformation T € L(R3 R?) such that {(1,0, —2),
(0,3,1)} is a basis for KerT.

2.3 Isomorphisms and inverse mappings
Definition 2.29. Let U, V and W be vector spaces over F, T € L(U, V) and

S e L(V,W). We define the function SoT : U — W by (SoT)(u) = S(T(u))
forallu e U. SoT is called the composition of S and T'.

Theorem 2.30. If T € L(U,V) and S € L(V,W), then So T € L(U,W).

Example 2.31. Let T € L(R3 R?) define by T(z,y,z) = (2 — y,2x) and
S € L(R?* R?) define by S(z,y) = (2y,z —y,x). Find SoT and T o S.



Definition 2.32. Let U and V' be vector spaces over F, T € L(U,V) and
S e LV,U).

(1) If SoT = Iy, then S is called a left inverse to T'.
(2) If T oS = Iy, then S is called a right inverse to T

(8) S is called an inverse to T if S is a left inverse to T and S is a right
wnverse to T

Example 2.33. Let T € L(R?* R?) defined by T(x,y) = (z,2 + 2y,z — y).
Show that S € L(R? R?) defined by S(x,y,z) = (v, —2x +y + 2) is a left
inverse to T'.

Example 2.34. Let T € L(R? Pi(R)) defined by T(a,b) = (a + b) + ba.
Show that S € L(P(R),R?) defined by S(a + bx) = (a — b,b) is an inverse
toT.

Example 2.35. Let T € L(R3 R?) defined by T(x,y,2) = (z + y, 27 — 2).
Show that S € L(R? R?) defined by S(z,y) = (3y,x—1y,0) is a right inverse
toT.
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Theorem 2.36. Let U and V' be vector spaces over F and T' € L(U, V). If
T has left and right inverses, then they must be equal.

Definition 2.37. Let U and V' be vector spaces over F. T € L(U,V) is
called an isomorphism (or invertible, or non-singular) if there exist
S e L(V,U) such that SoT = Iy and T o S = Iy, and we write S = T~ ".

Definition 2.38. Let U and V' be vector spaces over F. U is said to be
isomorphic to V, denoted by U =V, if there exist T € L(U, V') which is an
1somorphism.

Example 2.39. In Example 2.34, T is an isomorphism, and P;(R) = R2.

Theorem 2.40. If T : U — V is an isomorphism, then T~ is a linear
transformation.

Theorem 2.41. Let U and V' be vector spaces over F and T € L(U,V).
Then T has a right inverse if and only if T is onto.
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Theorem 2.42. Let U and V be vector spaces over F and T € L(U,V).
Then T has a left inverse if and only iof T is one-to-one.

Theorem 2.43. Let U and V' be vector spaces over F and T € L(U,V).
Then T is an isomorphism if and only if T is one-to-one and onto.

Theorem 2.44. Let U and V be finite dimensional vector spaces over F.
Then U =2V if and only if dimU = dim V.

Example 2.45. Let F be any field and U be an n-dimensional vector space
over F. Then U = F™.
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Example 2.46. Let F be any field. Then P,(F) = F"" and M,,xn(F) =
Fme.

Example 2.47. C = R?, where C is a space over R.

Definition 2.48. Let U and V' be finite dimensional vector spaces over F
such that dimU = m and dimV = n. Let H = {uy,ug, - ,un} be a
basis for U and S = {vy,va, -+ ,v,} be a basis for V. Let T € L(U,V).
Then T(u;) € V fori=1,--- ,m. T(u;) can expressed uniquely as a linear
combination of the vectors in S.

T(ul) = a11V1 + a19V2 + -+ A1pUp,

T(UQ) = Q921V1 + (055X + -+ a9y, Up,

T(Um) = AmiV1 + Gmava + -+ + AUy,

11 Q12 -+ Q1n
Q21 Q22 -+ Q2 . . .

Let My = ] ] ) ~|. The matrix My is the matrix of T
Am1 Am2 - Amn

relative to the bases H and S, and it is denoted by (Mr, H,S) or My.

Example 2.49. Let T € L(R3 R?) defined by T(x,y,2) = (z + y,z + 2).
Find My relative to the standard bases for R? and R2.
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Theorem 2.50. Let H = {uy,us, -+ ,un} be a basis for U and S = {vy, vq,

-, Un} be a basis for V. Let T € L(U,V) and u € U. Let X = (x1,x9, -+,
Tm), andY = (y1,Y2, -+ ,Yn) be vector coordinates of u and T (u) with respect
to the bases H and S, respectively. Let Mr be a matriz of T relative to the
bases H and S. Then'Y = X Mry.

Remark 2.51. Let G = {uy,ug, -+ ,un}, H = {v1,v9,--+ ,0,} and J =
{wy,wa, -+ ,w,} be bases for vector spaces U, V and W over F, respectively.
Let T € L(U,V) and S € L(V,W). Let My be a matriz of T relative to
the bases G and H. Let Mg be a matrixz of S relative to the bases H and
J. Then the matriz of S oT relative to the bases G and J is MrMg( i.e.
Mgor = M7pMsg).

Remark 2.52. Let G = {uy,ug, -+ ,un} and H = {vy,ve,--- ,v,} be bases
for vector spaces U and V' over F, respectively. LetT,S € L(U,V) andr € F.
Let My, Mg, Ms1, and M,r be matrices of T, S, S + T, and r'T relative to
the bases G and H, respectively. Then

(1) Mgir = Mg+ Mrp.

(2) MrT = TMT.

Remark 2.53. Let U and V' be finite dimensional vector spaces over F and
T € L(U,V). T is an isomorphism if and only if the matriz for T relative to
any pair of bases of U and V is invertible.

Theorem 2.54. Let U be a finite dimensional vector space over F and T, S €
LWU,U). If SoT =1, thenToS=1.
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Theorem 2.55. Let F be any field and M € M,,x,(F). Then there exist a
linear transformation T € L(F™ F™) such that the matriz for T relative to
standard bases for F™ and F™ is M (i.e. My = M ).

Theorem 2.56. Let M and N be n X n matrices over a field F. If MN =1,
then NM = 1.

Theorem 2.57. Let U and V' be finite dimensional vector spaces over F such
that dimU = m and dimV = n. Let T € L(U,V) such that dim ImT = r.
Then there exist bases for U and V' such that the matrix for T relative to

these bases is Mp = K)r 81 . (This form is called a Normal form”).
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Example 2.58. Let T € L(R? R?) defined by T(v,y,z) = (v +y,x + 2).
Find bases for R® and R? for which the matriz for T relative to these bases
1s of normal form.

Remark 2.59. Let M, M* € M,,x,(F) and let dimU = m and dimV =
n. Then M and M* are matrices for a linear transformation T € L(U, V)
relative to distinct pair of bases of U and V' if and only if there exist invertible
matrices P € Myxm(F) and Q € Myxn(F) such that M* = PMQ™.
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