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1 Vector Spaces

2 Linear Transformations

Linear transformations, elementary properties of linear transformations, ker-
nel and injectivity, rank plus nullity, surjectivity, isomorphisms.

2.1 Linear Transformations

Definition 2.1 (Linear transformation). Let U and V be vector spaces over
the same field F. A function T : U → V is called a linear transformation
if:

(L1) for all u, v ∈ U , we have T (u+ v) = T (u) + T (v);

(L2) for all u ∈ U and a ∈ F, we have T (au) = aT (u).

Example 2.2. Let T : R3 → R2 defined by T (x, y, z) = (x+ y, x+ z). Show
that T is a linear transformation.

Example 2.3. Let T : R2 → R2 defined by T (x, y) = (x + 1, x + y). Test
whether T is a linear transformation or not.
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Example 2.4 (Linear function). In Calculus, we call a function f : R → R
linear if f is given by the formula y = ax + b. Is there a relation between
these functions and the linear transformation that we introduced?

Example 2.5. Let T : C1(a, b) → C(a, b) defined by T (f) = f ′. Show that
T is a linear transformation.

Example 2.6. Let U be any vector space over F. Let T : U → U defined by
T (u) = u for all u ∈ U . Show that T is a linear transformation (called the
identity transformation).

Example 2.7. Let U and V be vector spaces over F. Let T : U → V defined
by T (u) = 0V for all u ∈ U . Show that T is a linear transformation (called
the zero transformation).
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Example 2.8. Suppose U = 2Ω and V = 2∆ where ∆ is a subset of Ω.
Define a function T : U → V via T (A) = A ∩ ∆ for each vector-subset A.
This is a linear transformation.

Just like with the subspace test, there is an easier, one-condition check
of linearity.

Theorem 2.9 (Linearity check). A function T : U → V is a linear trans-
formation if and only if for all u, v ∈ U and all a ∈ F, we have T (au+ v) =
aT (u) + T (v).

Theorem 2.10. Suppose T : U → V is a linear transformation. Then

(1) T (0U) = 0V ;

(2) T (−u) = −T (u) for all u ∈ U ;

(3) T (u− v) = T (u)− T (v) for all u, v ∈ U .
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Theorem 2.11. Let U and V be finite dimensional vector spaces over F, and
let S = {u1, · · · , un} be a basis for U . Then for any set {v1, · · · , vn} of n
vectors (not necessarily distinct) in V , there is a unique linear transformation
T : U → V such that T (ui) = vi for i = 1, · · · , n.

Example 2.12. Let S = {(1, 0), (2, 1)} be a basis for R2. Find a linear
transformation T : R2 → P2(R) such that T (1, 0) = 1+x and T (2, 1) = x−x2.

Definition 2.13. Let U and V be vector spaces over F. For any linear
transformations S, T : U → V and r ∈ F, we define S + T : U → V by
(S+T )(u) = S(u)+T (u) for all u ∈ U and rT : U → V by (rT )(u) = rT (u)
for all u ∈ U .
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Example 2.14. Let S, T : R2 → R2 be linear transformations defined by
T (x, y) = (x, 2y) and S(x, y) = (y, x). Find 2T , S + T and 3T − 4S.

Theorem 2.15. Let U and V be vector spaces over F. For any linear trans-
formations S, T : U → V and r ∈ F, S+T and rT are linear transformations.

Definition 2.16. The set of all linear transformations from U to V is de-
noted by L(U, V ).

Remark 2.17. Let U and V be vector spaces over F. Then L(U, V ) is a
vector space over F.
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2.2 Kernel and Image of a Linear Transformation

Definition 2.18. Suppose U and V be vector spaces over F and T ∈ L(U, V ).

(1) The kernel of T , denoted by Ker T , is the set

KerT = {u ∈ U | T (u) = 0}.

(2) The image (range) of T , denoted by Im T , is the set

ImT = {v ∈ V | v = T (u) for some u ∈ U} = {T (u) | u ∈ U}.

Example 2.19. Let T ∈ L(R3,R2) defined by T (x, y, z) = (x + y + z, 0).
Find KerT and ImT .

Example 2.20. Let T ∈ L(R2,R2) defined by T (x, y) = (y, x). Find KerT
and ImT .

Theorem 2.21. Suppose U and V be vector spaces over F and T ∈ L(U, V ).
Then

(1) KerT is a subspace of U .

(2) ImT is a subspace of V .
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Theorem 2.22. Let U and V be vector spaces over F and T ∈ L(U, V ).
Then T is one-to-one if and only if KerT = {0}.

Remark 2.23. Let U and V be vector spaces over F and T ∈ L(U, V ). Then
T is onto if and only if ImT = V .

Definition 2.24. Let U and V be vector spaces over F and T ∈ L(U, V ).

(1) If KerT is a finite dimensional subspace of U , then the dimension of
KerT is called the nullity of T , and denoted by n(T ) (or dimKerT ).

(2) If ImT is a finite dimensional subspace of V , then the dimension of
ImT is called the rank of T , and denoted by r(T ) (or dim ImT ).

Example 2.25. In Example 2.19, n(T ) = 2 and r(T ) = 1, while in Example
2.20, n(T ) = 0 and r(T ) = 2.

Theorem 2.26 (Rank+nullity). Suppose T ∈ L(U, V ) and suppose that
dimU < ∞. Then dim ImT + dimKerT = dimU .

Example 2.27. Find a linear transformation T ∈ L(R2,R2) such that {(1, 2)}
is a basis for ImT .
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Example 2.28. Find a linear transformation T ∈ L(R3,R2) such that {(1, 0,−2),
(0, 3, 1)} is a basis for KerT .

2.3 Isomorphisms and inverse mappings

Definition 2.29. Let U , V and W be vector spaces over F, T ∈ L(U, V ) and
S ∈ L(V,W ). We define the function S◦T : U → W by (S◦T )(u) = S(T (u))
for all u ∈ U . S ◦ T is called the composition of S and T .

Theorem 2.30. If T ∈ L(U, V ) and S ∈ L(V,W ), then S ◦ T ∈ L(U,W ).

Example 2.31. Let T ∈ L(R3,R2) define by T (x, y, z) = (z − y, 2x) and
S ∈ L(R2,R3) define by S(x, y) = (2y, x− y, x). Find S ◦ T and T ◦ S.
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Definition 2.32. Let U and V be vector spaces over F, T ∈ L(U, V ) and
S ∈ L(V, U).

(1) If S ◦ T = IU , then S is called a left inverse to T .

(2) If T ◦ S = IV , then S is called a right inverse to T .

(3) S is called an inverse to T if S is a left inverse to T and S is a right
inverse to T .

Example 2.33. Let T ∈ L(R2,R3) defined by T (x, y) = (x, x + 2y, x − y).
Show that S ∈ L(R3,R2) defined by S(x, y, z) = (x,−2x + y + z) is a left
inverse to T .

Example 2.34. Let T ∈ L(R2, P1(R)) defined by T (a, b) = (a + b) + bx.
Show that S ∈ L(P1(R),R2) defined by S(a + bx) = (a − b, b) is an inverse
to T .

Example 2.35. Let T ∈ L(R3,R2) defined by T (x, y, z) = (x + y, 2x − z).
Show that S ∈ L(R2,R3) defined by S(x, y) = (1

2
y, x− 1

2
y, 0) is a right inverse

to T .
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Theorem 2.36. Let U and V be vector spaces over F and T ∈ L(U, V ). If
T has left and right inverses, then they must be equal.

Definition 2.37. Let U and V be vector spaces over F. T ∈ L(U, V ) is
called an isomorphism (or invertible, or non-singular) if there exist
S ∈ L(V, U) such that S ◦ T = IU and T ◦ S = IV , and we write S = T−1.

Definition 2.38. Let U and V be vector spaces over F. U is said to be
isomorphic to V , denoted by U ∼= V , if there exist T ∈ L(U, V ) which is an
isomorphism.

Example 2.39. In Example 2.34, T is an isomorphism, and P1(R) ∼= R2.

Theorem 2.40. If T : U → V is an isomorphism, then T−1 is a linear
transformation.

Theorem 2.41. Let U and V be vector spaces over F and T ∈ L(U, V ).
Then T has a right inverse if and only if T is onto.
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Theorem 2.42. Let U and V be vector spaces over F and T ∈ L(U, V ).
Then T has a left inverse if and only if T is one-to-one.

Theorem 2.43. Let U and V be vector spaces over F and T ∈ L(U, V ).
Then T is an isomorphism if and only if T is one-to-one and onto.

Theorem 2.44. Let U and V be finite dimensional vector spaces over F.
Then U ∼= V if and only if dimU = dimV .

Example 2.45. Let F be any field and U be an n-dimensional vector space
over F. Then U ∼= Fn.
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Example 2.46. Let F be any field. Then Pn(F) ∼= Fn+1, and Mm×n(F) ∼=
Fmn.

Example 2.47. C ∼= R2, where C is a space over R.

Definition 2.48. Let U and V be finite dimensional vector spaces over F
such that dimU = m and dimV = n. Let H = {u1, u2, · · · , um} be a
basis for U and S = {v1, v2, · · · , vn} be a basis for V . Let T ∈ L(U, V ).
Then T (ui) ∈ V for i = 1, · · · ,m. T (ui) can expressed uniquely as a linear
combination of the vectors in S.

T (u1) = a11v1 + a12v2 + · · ·+ a1nvn

T (u2) = a21v1 + a22v2 + · · ·+ a2nvn

...

T (um) = am1v1 + am2v2 + · · ·+ amnvn

Let MT =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

. The matrix MT is the matrix of T

relative to the bases H and S, and it is denoted by (MT , H, S) or MT .

Example 2.49. Let T ∈ L(R3,R2) defined by T (x, y, z) = (x + y, x + z).
Find MT relative to the standard bases for R3 and R2.
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Theorem 2.50. Let H = {u1, u2, · · · , um} be a basis for U and S = {v1, v2,
· · · , vn} be a basis for V . Let T ∈ L(U, V ) and u ∈ U . Let X = (x1, x2, · · · ,
xm), and Y = (y1, y2, · · · , yn) be vector coordinates of u and T (u) with respect
to the bases H and S, respectively. Let MT be a matrix of T relative to the
bases H and S. Then Y = XMT .

Remark 2.51. Let G = {u1, u2, · · · , um}, H = {v1, v2, · · · , vn} and J =
{w1, w2, · · · , wp} be bases for vector spaces U , V and W over F, respectively.
Let T ∈ L(U, V ) and S ∈ L(V,W ). Let MT be a matrix of T relative to
the bases G and H. Let MS be a matrix of S relative to the bases H and
J . Then the matrix of S ◦ T relative to the bases G and J is MTMS( i.e.
MS◦T = MTMS).

Remark 2.52. Let G = {u1, u2, · · · , um} and H = {v1, v2, · · · , vn} be bases
for vector spaces U and V over F, respectively. Let T, S ∈ L(U, V ) and r ∈ F.
Let MT ,MS,MS+T , and MrT be matrices of T, S, S + T , and rT relative to
the bases G and H, respectively. Then

(1) MS+T = MS +MT .

(2) MrT = rMT .

Remark 2.53. Let U and V be finite dimensional vector spaces over F and
T ∈ L(U, V ). T is an isomorphism if and only if the matrix for T relative to
any pair of bases of U and V is invertible.

Theorem 2.54. Let U be a finite dimensional vector space over F and T, S ∈
L(U,U). If S ◦ T = I, then T ◦ S = I.

14



Theorem 2.55. Let F be any field and M ∈ Mm×n(F). Then there exist a
linear transformation T ∈ L(Fm,Fn) such that the matrix for T relative to
standard bases for Fm and Fn is M (i.e. MT = M).

Theorem 2.56. Let M and N be n×n matrices over a field F. If MN = I,
then NM = I.

Theorem 2.57. Let U and V be finite dimensional vector spaces over F such
that dimU = m and dimV = n. Let T ∈ L(U, V ) such that dim ImT = r.
Then there exist bases for U and V such that the matrix for T relative to

these bases is MT =

[
Ir 0
0 0

]
. (This form is called a Normal form”).
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Example 2.58. Let T ∈ L(R3,R2) defined by T (x, y, z) = (x + y, x + z).
Find bases for R3 and R2 for which the matrix for T relative to these bases
is of normal form.

Remark 2.59. Let M,M∗ ∈ Mm×n(F) and let dimU = m and dimV =
n. Then M and M∗ are matrices for a linear transformation T ∈ L(U, V )
relative to distinct pair of bases of U and V if and only if there exist invertible
matrices P ∈ Mm×m(F) and Q ∈ Mn×n(F) such that M∗ = PMQ−1.
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