Linear Algebra I

Dr. Sanhan M.S. Khasraw
Salahaddin University-Erbil
College of Education
Department of Mathematics
Second Year
Fall 2023-2024

1 Vector Spaces

2 Linear Transformations

Linear transformations, elementary properties of linear transformations, kernel and injectivity, rank plus nullity, surjectivity, isomorphisms.

2.1 Linear Transformations

Definition 2.1 (Linear transformation). Let U and V be vector spaces over the same field \mathbb{F}. A function $T: U \rightarrow V$ is called a linear transformation if:
(L1) for all $u, v \in U$, we have $T(u+v)=T(u)+T(v)$;
(L2) for all $u \in U$ and $a \in \mathbb{F}$, we have $T(a u)=a T(u)$.
Example 2.2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(x+y, x+z)$. Show that T is a linear transformation.

Example 2.3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+1, x+y)$. Test whether T is a linear transformation or not.

Example 2.4 (Linear function). In Calculus, we call a function $f: \mathbb{R} \rightarrow \mathbb{R}$ linear if f is given by the formula $y=a x+b$. Is there a relation between these functions and the linear transformation that we introduced?

Example 2.5. Let $T: C^{1}(a, b) \rightarrow C(a, b)$ defined by $T(f)=f^{\prime}$. Show that T is a linear transformation.

Example 2.6. Let U be any vector space over \mathbb{F}. Let $T: U \rightarrow U$ defined by $T(u)=u$ for all $u \in U$. Show that T is a linear transformation (called the identity transformation).

Example 2.7. Let U and V be vector spaces over \mathbb{F}. Let $T: U \rightarrow V$ defined by $T(u)=0_{V}$ for all $u \in U$. Show that T is a linear transformation (called the zero transformation).

Example 2.8. Suppose $U=2^{\Omega}$ and $V=2^{\Delta}$ where Δ is a subset of Ω. Define a function $T: U \rightarrow V$ via $T(A)=A \cap \Delta$ for each vector-subset A. This is a linear transformation.

Just like with the subspace test, there is an easier, one-condition check of linearity.

Theorem 2.9 (Linearity check). A function $T: U \rightarrow V$ is a linear transformation if and only if for all $u, v \in U$ and all $a \in \mathbb{F}$, we have $T(a u+v)=$ $a T(u)+T(v)$.

Theorem 2.10. Suppose $T: U \rightarrow V$ is a linear transformation. Then
(1) $T\left(0_{U}\right)=0_{V}$;
(2) $T(-u)=-T(u)$ for all $u \in U$;
(3) $T(u-v)=T(u)-T(v)$ for all $u, v \in U$.

Theorem 2.11. Let U and V be finite dimensional vector spaces over \mathbb{F}, and let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be a basis for U. Then for any set $\left\{v_{1}, \cdots, v_{n}\right\}$ of n vectors (not necessarily distinct) in V, there is a unique linear transformation $T: U \rightarrow V$ such that $T\left(u_{i}\right)=v_{i}$ for $i=1, \cdots, n$.

Example 2.12. Let $S=\{(1,0),(2,1)\}$ be a basis for \mathbb{R}^{2}. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow P_{2}(\mathbb{R})$ such that $T(1,0)=1+x$ and $T(2,1)=x-x^{2}$.

Definition 2.13. Let U and V be vector spaces over \mathbb{F}. For any linear transformations $S, T: U \rightarrow V$ and $r \in \mathbb{F}$, we define $S+T: U \rightarrow V$ by $(S+T)(u)=S(u)+T(u)$ for all $u \in U$ and $r T: U \rightarrow V$ by $(r T)(u)=r T(u)$ for all $u \in U$.

Example 2.14. Let $S, T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear transformations defined by $T(x, y)=(x, 2 y)$ and $S(x, y)=(y, x)$. Find $2 T, S+T$ and $3 T-4 S$.

Theorem 2.15. Let U and V be vector spaces over \mathbb{F}. For any linear transformations $S, T: U \rightarrow V$ and $r \in \mathbb{F}, S+T$ and $r T$ are linear transformations.

Definition 2.16. The set of all linear transformations from U to V is denoted by $L(U, V)$.

Remark 2.17. Let U and V be vector spaces over \mathbb{F}. Then $L(U, V)$ is a vector space over \mathbb{F}.

2.2 Kernel and Image of a Linear Transformation

Definition 2.18. Suppose U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$.
(1) The kernel of T, denoted by $\operatorname{Ker} T$, is the set

$$
\operatorname{Ker} T=\{u \in U \mid T(u)=0\} .
$$

(2) The image (range) of T, denoted by $\operatorname{Im} T$, is the set

$$
\operatorname{ImT}=\{v \in V \mid v=T(u) \text { for some } u \in U\}=\{T(u) \mid u \in U\} .
$$

Example 2.19. Let $T \in L\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ defined by $T(x, y, z)=(x+y+z, 0)$. Find $\operatorname{Ker} T$ and ImT.

Example 2.20. Let $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ defined by $T(x, y)=(y, x)$. Find $\operatorname{Ker} T$ and ImT.

Theorem 2.21. Suppose U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then
(1) $\operatorname{Ker} T$ is a subspace of U.
(2) $\operatorname{Im} T$ is a subspace of V.

Theorem 2.22. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T is one-to-one if and only if $\operatorname{Ker} T=\{0\}$.

Remark 2.23. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T is onto if and only if $\operatorname{Im} T=V$.

Definition 2.24. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$.
(1) If $\operatorname{Ker} T$ is a finite dimensional subspace of U, then the dimension of Ker T is called the nullity of T, and denoted by $n(T)$ (or $\operatorname{dim} \operatorname{Ker} T$).
(2) If $\operatorname{Im} T$ is a finite dimensional subspace of V, then the dimension of ImT is called the rank of T, and denoted by $r(T)$ (or $\operatorname{dim} \operatorname{Im} T$).

Example 2.25. In Example 2.19, $n(T)=2$ and $r(T)=1$, while in Example 2.20, $n(T)=0$ and $r(T)=2$.

Theorem 2.26 (Rank+nullity). Suppose $T \in L(U, V)$ and suppose that $\operatorname{dim} U<\infty$. Then $\operatorname{dim} \operatorname{Im} T+\operatorname{dim} \operatorname{Ker} T=\operatorname{dim} U$.

Example 2.27. Find a linear transformation $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ such that $\{(1,2)\}$ is a basis for ImT.

Example 2.28. Find a linear transformation $T \in L\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ such that $\{(1,0,-2)$, $(0,3,1)\}$ is a basis for KerT.

2.3 Isomorphisms and inverse mappings

Definition 2.29. Let U, V and W be vector spaces over $\mathbb{F}, T \in L(U, V)$ and $S \in L(V, W)$. We define the function $S \circ T: U \rightarrow W$ by $(S \circ T)(u)=S(T(u))$ for all $u \in U . S \circ T$ is called the composition of S and T.

Theorem 2.30. If $T \in L(U, V)$ and $S \in L(V, W)$, then $S \circ T \in L(U, W)$.

Example 2.31. Let $T \in L\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ define by $T(x, y, z)=(z-y, 2 x)$ and $S \in L\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ define by $S(x, y)=(2 y, x-y, x)$. Find $S \circ T$ and $T \circ S$.

Definition 2.32. Let U and V be vector spaces over $\mathbb{F}, T \in L(U, V)$ and $S \in L(V, U)$.
(1) If $S \circ T=I_{U}$, then S is called a left inverse to T.
(2) If $T \circ S=I_{V}$, then S is called a right inverse to T.
(3) S is called an inverse to T if S is a left inverse to T and S is a right inverse to T.

Example 2.33. Let $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ defined by $T(x, y)=(x, x+2 y, x-y)$. Show that $S \in L\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ defined by $S(x, y, z)=(x,-2 x+y+z)$ is a left inverse to T.

Example 2.34. Let $T \in L\left(\mathbb{R}^{2}, P_{1}(\mathbb{R})\right)$ defined by $T(a, b)=(a+b)+b x$. Show that $S \in L\left(P_{1}(\mathbb{R}), \mathbb{R}^{2}\right)$ defined by $S(a+b x)=(a-b, b)$ is an inverse to T.

Example 2.35. Let $T \in L\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ defined by $T(x, y, z)=(x+y, 2 x-z)$. Show that $S \in L\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ defined by $S(x, y)=\left(\frac{1}{2} y, x-\frac{1}{2} y, 0\right)$ is a right inverse to T.

Theorem 2.36. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. If T has left and right inverses, then they must be equal.

Definition 2.37. Let U and V be vector spaces over $\mathbb{F} . T \in L(U, V)$ is called an isomorphism (or invertible, or non-singular) if there exist $S \in L(V, U)$ such that $S \circ T=I_{U}$ and $T \circ S=I_{V}$, and we write $S=T^{-1}$.

Definition 2.38. Let U and V be vector spaces over \mathbb{F}. U is said to be isomorphic to V, denoted by $U \cong V$, if there exist $T \in L(U, V)$ which is an isomorphism.

Example 2.39. In Example 2.34, T is an isomorphism, and $P_{1}(\mathbb{R}) \cong \mathbb{R}^{2}$.

Theorem 2.40. If $T: U \rightarrow V$ is an isomorphism, then T^{-1} is a linear transformation.

Theorem 2.41. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T has a right inverse if and only if T is onto.

Theorem 2.42. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T has a left inverse if and only if T is one-to-one.

Theorem 2.43. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T is an isomorphism if and only if T is one-to-one and onto.

Theorem 2.44. Let U and V be finite dimensional vector spaces over \mathbb{F}. Then $U \cong V$ if and only if $\operatorname{dim} U=\operatorname{dim} V$.

Example 2.45. Let \mathbb{F} be any field and U be an n-dimensional vector space over \mathbb{F}. Then $U \cong \mathbb{F}^{n}$.

Example 2.46. Let \mathbb{F} be any field. Then $P_{n}(\mathbb{F}) \cong \mathbb{F}^{n+1}$, and $M_{m \times n}(\mathbb{F}) \cong$ $\mathbb{F}^{m n}$.

Example 2.47. $\mathbb{C} \cong \mathbb{R}^{2}$, where \mathbb{C} is a space over \mathbb{R}.

Definition 2.48. Let U and V be finite dimensional vector spaces over \mathbb{F} such that $\operatorname{dim} U=m$ and $\operatorname{dim} V=n$. Let $H=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ be a basis for U and $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis for V. Let $T \in L(U, V)$. Then $T\left(u_{i}\right) \in V$ for $i=1, \cdots, m . T\left(u_{i}\right)$ can expressed uniquely as a linear combination of the vectors in S.

$$
\begin{gathered}
T\left(u_{1}\right)=a_{11} v_{1}+a_{12} v_{2}+\cdots+a_{1 n} v_{n} \\
T\left(u_{2}\right)=a_{21} v_{1}+a_{22} v_{2}+\cdots+a_{2 n} v_{n} \\
\vdots \\
T\left(u_{m}\right)=a_{m 1} v_{1}+a_{m 2} v_{2}+\cdots+a_{m n} v_{n} \\
\text { Let } M_{T}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] . \text { The matrix } M_{T} \text { is the matrix of } T
\end{gathered}
$$

relative to the bases H and S, and it is denoted by $\left(M_{T}, H, S\right)$ or M_{T}.

Example 2.49. Let $T \in L\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ defined by $T(x, y, z)=(x+y, x+z)$. Find M_{T} relative to the standard bases for \mathbb{R}^{3} and \mathbb{R}^{2}.

Theorem 2.50. Let $H=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ be a basis for U and $S=\left\{v_{1}, v_{2}\right.$, $\left.\cdots, v_{n}\right\}$ be a basis for V. Let $T \in L(U, V)$ and $u \in U$. Let $X=\left(x_{1}, x_{2}, \cdots\right.$, $\left.x_{m}\right)$, and $Y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ be vector coordinates of u and $T(u)$ with respect to the bases H and S, respectively. Let M_{T} be a matrix of T relative to the bases H and S. Then $Y=X M_{T}$.

Remark 2.51. Let $G=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}, H=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $J=$ $\left\{w_{1}, w_{2}, \cdots, w_{p}\right\}$ be bases for vector spaces U, V and W over \mathbb{F}, respectively. Let $T \in L(U, V)$ and $S \in L(V, W)$. Let M_{T} be a matrix of T relative to the bases G and H. Let M_{S} be a matrix of S relative to the bases H and J. Then the matrix of $S \circ T$ relative to the bases G and J is $M_{T} M_{S}$ (i.e. $\left.M_{S \circ T}=M_{T} M_{S}\right)$.

Remark 2.52. Let $G=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ and $H=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be bases for vector spaces U and V over \mathbb{F}, respectively. Let $T, S \in L(U, V)$ and $r \in \mathbb{F}$. Let M_{T}, M_{S}, M_{S+T}, and $M_{r T}$ be matrices of $T, S, S+T$, and $r T$ relative to the bases G and H, respectively. Then
(1) $M_{S+T}=M_{S}+M_{T}$.
(2) $M_{r T}=r M_{T}$.

Remark 2.53. Let U and V be finite dimensional vector spaces over \mathbb{F} and $T \in L(U, V) . T$ is an isomorphism if and only if the matrix for T relative to any pair of bases of U and V is invertible.

Theorem 2.54. Let U be a finite dimensional vector space over \mathbb{F} and $T, S \in$ $L(U, U)$. If $S \circ T=I$, then $T \circ S=I$.

Theorem 2.55. Let \mathbb{F} be any field and $M \in M_{m \times n}(\mathbb{F})$. Then there exist a linear transformation $T \in L\left(\mathbb{F}^{m}, \mathbb{F}^{n}\right)$ such that the matrix for T relative to standard bases for \mathbb{F}^{m} and \mathbb{F}^{n} is M (i.e. $M_{T}=M$).

Theorem 2.56. Let M and N be $n \times n$ matrices over a field \mathbb{F}. If $M N=I$, then $N M=I$.

Theorem 2.57. Let U and V be finite dimensional vector spaces over \mathbb{F} such that $\operatorname{dim} U=m$ and $\operatorname{dim} V=n$. Let $T \in L(U, V)$ such that $\operatorname{dim} \operatorname{Im} T=r$. Then there exist bases for U and V such that the matrix for T relative to these bases is $M_{T}=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$. (This form is called a Normal form").

Example 2.58. Let $T \in L\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ defined by $T(x, y, z)=(x+y, x+z)$. Find bases for \mathbb{R}^{3} and \mathbb{R}^{2} for which the matrix for T relative to these bases is of normal form.

Remark 2.59. Let $M, M^{*} \in M_{m \times n}(\mathbb{F})$ and let $\operatorname{dim} U=m$ and $\operatorname{dim} V=$ n. Then M and M^{*} are matrices for a linear transformation $T \in L(U, V)$ relative to distinct pair of bases of U and V if and only if there exist invertible matrices $P \in M_{m \times m}(\mathbb{F})$ and $Q \in M_{n \times n}(\mathbb{F})$ such that $M^{*}=P M Q^{-1}$.

