Linear Algebra I

Dr. Sanhan M.S. Khasraw

Salahaddin University-Erbil College of Education Department of Mathematics Second Year Fall 2023-2024

1 Vector Spaces

2 Linear Transformations

Linear transformations, elementary properties of linear transformations, kernel and injectivity, rank plus nullity, surjectivity, isomorphisms.

2.1 Linear Transformations

Definition 2.1 (Linear transformation). Let U and V be vector spaces over the same field \mathbb{F} . A function $T: U \to V$ is called a **linear transformation** if:

(L1) for all $u, v \in U$, we have T(u+v) = T(u) + T(v);

(L2) for all $u \in U$ and $a \in \mathbb{F}$, we have T(au) = aT(u).

Example 2.2. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x + y, x + z). Show that T is a linear transformation.

Example 2.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + 1, x + y). Test whether T is a linear transformation or not.

Example 2.4 (Linear function). In Calculus, we call a function $f : \mathbb{R} \to \mathbb{R}$ linear if f is given by the formula y = ax + b. Is there a relation between these functions and the linear transformation that we introduced?

Example 2.5. Let $T : C^1(a, b) \to C(a, b)$ defined by T(f) = f'. Show that T is a linear transformation.

Example 2.6. Let U be any vector space over \mathbb{F} . Let $T : U \to U$ defined by T(u) = u for all $u \in U$. Show that T is a linear transformation (called the identity transformation).

Example 2.7. Let U and V be vector spaces over \mathbb{F} . Let $T: U \to V$ defined by $T(u) = 0_V$ for all $u \in U$. Show that T is a linear transformation (called the zero transformation).

Example 2.8. Suppose $U = 2^{\Omega}$ and $V = 2^{\Delta}$ where Δ is a subset of Ω . Define a function $T : U \to V$ via $T(A) = A \cap \Delta$ for each vector-subset A. This is a linear transformation.

Just like with the subspace test, there is an easier, one-condition check of linearity.

Theorem 2.9 (Linearity check). A function $T : U \to V$ is a linear transformation if and only if for all $u, v \in U$ and all $a \in \mathbb{F}$, we have T(au + v) = aT(u) + T(v).

Theorem 2.10. Suppose $T: U \to V$ is a linear transformation. Then

- (1) $T(0_U) = 0_V;$
- (2) T(-u) = -T(u) for all $u \in U$;
- (3) T(u v) = T(u) T(v) for all $u, v \in U$.

Theorem 2.11. Let U and V be finite dimensional vector spaces over \mathbb{F} , and let $S = \{u_1, \dots, u_n\}$ be a basis for U. Then for any set $\{v_1, \dots, v_n\}$ of n vectors (not necessarily distinct) in V, there is a unique linear transformation $T: U \to V$ such that $T(u_i) = v_i$ for $i = 1, \dots, n$.

Example 2.12. Let $S = \{(1,0), (2,1)\}$ be a basis for \mathbb{R}^2 . Find a linear transformation $T : \mathbb{R}^2 \to P_2(\mathbb{R})$ such that T(1,0) = 1+x and $T(2,1) = x-x^2$.

Definition 2.13. Let U and V be vector spaces over \mathbb{F} . For any linear transformations $S, T : U \to V$ and $r \in \mathbb{F}$, we define $S + T : U \to V$ by (S+T)(u) = S(u) + T(u) for all $u \in U$ and $rT : U \to V$ by (rT)(u) = rT(u) for all $u \in U$.

Example 2.14. Let $S, T : \mathbb{R}^2 \to \mathbb{R}^2$ be linear transformations defined by T(x, y) = (x, 2y) and S(x, y) = (y, x). Find 2T, S + T and 3T - 4S.

Theorem 2.15. Let U and V be vector spaces over \mathbb{F} . For any linear transformations $S, T: U \to V$ and $r \in \mathbb{F}$, S+T and rT are linear transformations.

Definition 2.16. The set of all linear transformations from U to V is denoted by L(U, V).

Remark 2.17. Let U and V be vector spaces over \mathbb{F} . Then L(U, V) is a vector space over \mathbb{F} .

2.2 Kernel and Image of a Linear Transformation

Definition 2.18. Suppose U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$.

(1) The kernel of T, denoted by Ker T, is the set

$$\operatorname{Ker} T = \{ u \in U \mid T(u) = 0 \}.$$

(2) The image (range) of T, denoted by Im T, is the set

 $ImT = \{v \in V \mid v = T(u) \text{ for some } u \in U\} = \{T(u) \mid u \in U\}.$

Example 2.19. Let $T \in L(\mathbb{R}^3, \mathbb{R}^2)$ defined by T(x, y, z) = (x + y + z, 0). Find KerT and ImT.

Example 2.20. Let $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ defined by T(x, y) = (y, x). Find KerT and ImT.

Theorem 2.21. Suppose U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then

- (1) KerT is a subspace of U.
- (2) ImT is a subspace of V.

Theorem 2.22. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T is one-to-one if and only if $KerT = \{0\}$.

Remark 2.23. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T is onto if and only if ImT = V.

Definition 2.24. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$.

- (1) If KerT is a finite dimensional subspace of U, then the dimension of KerT is called the **nullity** of T, and denoted by n(T) (or dim KerT).
- (2) If ImT is a finite dimensional subspace of V, then the dimension of ImT is called the **rank** of T, and denoted by r(T) (or dim ImT).

Example 2.25. In Example 2.19, n(T) = 2 and r(T) = 1, while in Example 2.20, n(T) = 0 and r(T) = 2.

Theorem 2.26 (Rank+nullity). Suppose $T \in L(U, V)$ and suppose that $\dim U < \infty$. Then $\dim ImT + \dim KerT = \dim U$.

Example 2.27. Find a linear transformation $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ such that $\{(1, 2)\}$ is a basis for ImT.

Example 2.28. Find a linear transformation $T \in L(\mathbb{R}^3, \mathbb{R}^2)$ such that $\{(1, 0, -2), (0, 3, 1)\}$ is a basis for KerT.

2.3 Isomorphisms and inverse mappings

Definition 2.29. Let U, V and W be vector spaces over \mathbb{F} , $T \in L(U, V)$ and $S \in L(V, W)$. We define the function $S \circ T : U \to W$ by $(S \circ T)(u) = S(T(u))$ for all $u \in U$. $S \circ T$ is called the composition of S and T.

Theorem 2.30. If $T \in L(U, V)$ and $S \in L(V, W)$, then $S \circ T \in L(U, W)$.

Example 2.31. Let $T \in L(\mathbb{R}^3, \mathbb{R}^2)$ define by T(x, y, z) = (z - y, 2x) and $S \in L(\mathbb{R}^2, \mathbb{R}^3)$ define by S(x, y) = (2y, x - y, x). Find $S \circ T$ and $T \circ S$.

Definition 2.32. Let U and V be vector spaces over \mathbb{F} , $T \in L(U, V)$ and $S \in L(V, U)$.

- (1) If $S \circ T = I_U$, then S is called a left inverse to T.
- (2) If $T \circ S = I_V$, then S is called a **right inverse** to T.
- (3) S is called an inverse to T if S is a left inverse to T and S is a right inverse to T.

Example 2.33. Let $T \in L(\mathbb{R}^2, \mathbb{R}^3)$ defined by T(x, y) = (x, x + 2y, x - y). Show that $S \in L(\mathbb{R}^3, \mathbb{R}^2)$ defined by S(x, y, z) = (x, -2x + y + z) is a left inverse to T.

Example 2.34. Let $T \in L(\mathbb{R}^2, P_1(\mathbb{R}))$ defined by T(a, b) = (a + b) + bx. Show that $S \in L(P_1(\mathbb{R}), \mathbb{R}^2)$ defined by S(a + bx) = (a - b, b) is an inverse to T.

Example 2.35. Let $T \in L(\mathbb{R}^3, \mathbb{R}^2)$ defined by T(x, y, z) = (x + y, 2x - z). Show that $S \in L(\mathbb{R}^2, \mathbb{R}^3)$ defined by $S(x, y) = (\frac{1}{2}y, x - \frac{1}{2}y, 0)$ is a right inverse to T. **Theorem 2.36.** Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. If T has left and right inverses, then they must be equal.

Definition 2.37. Let U and V be vector spaces over \mathbb{F} . $T \in L(U, V)$ is called an isomorphism (or invertible, or non-singular) if there exist $S \in L(V, U)$ such that $S \circ T = I_U$ and $T \circ S = I_V$, and we write $S = T^{-1}$.

Definition 2.38. Let U and V be vector spaces over \mathbb{F} . U is said to be **isomorphic** to V, denoted by $U \cong V$, if there exist $T \in L(U, V)$ which is an isomorphism.

Example 2.39. In Example 2.34, T is an isomorphism, and $P_1(\mathbb{R}) \cong \mathbb{R}^2$.

Theorem 2.40. If $T : U \to V$ is an isomorphism, then T^{-1} is a linear transformation.

Theorem 2.41. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T has a right inverse if and only if T is onto. **Theorem 2.42.** Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T has a left inverse if and only if T is one-to-one.

Theorem 2.43. Let U and V be vector spaces over \mathbb{F} and $T \in L(U, V)$. Then T is an isomorphism if and only if T is one-to-one and onto.

Theorem 2.44. Let U and V be finite dimensional vector spaces over \mathbb{F} . Then $U \cong V$ if and only if dim $U = \dim V$.

Example 2.45. Let \mathbb{F} be any field and U be an n-dimensional vector space over \mathbb{F} . Then $U \cong \mathbb{F}^n$.

Example 2.46. Let \mathbb{F} be any field. Then $P_n(\mathbb{F}) \cong \mathbb{F}^{n+1}$, and $M_{m \times n}(\mathbb{F}) \cong \mathbb{F}^{mn}$.

Example 2.47. $\mathbb{C} \cong \mathbb{R}^2$, where \mathbb{C} is a space over \mathbb{R} .

Definition 2.48. Let U and V be finite dimensional vector spaces over \mathbb{F} such that dim U = m and dim V = n. Let $H = \{u_1, u_2, \dots, u_m\}$ be a basis for U and $S = \{v_1, v_2, \dots, v_n\}$ be a basis for V. Let $T \in L(U, V)$. Then $T(u_i) \in V$ for $i = 1, \dots, m$. $T(u_i)$ can expressed uniquely as a linear combination of the vectors in S.

$$T(u_{1}) = a_{11}v_{1} + a_{12}v_{2} + \dots + a_{1n}v_{n}$$

$$T(u_{2}) = a_{21}v_{1} + a_{22}v_{2} + \dots + a_{2n}v_{n}$$

$$\vdots$$

$$T(u_{m}) = a_{m1}v_{1} + a_{m2}v_{2} + \dots + a_{mn}v_{n}$$

$$Let \ M_{T} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

$$The \ matrix \ M_{T} \ is \ the \ matrix \ of \ T$$

relative to the bases H and S, and it is denoted by (M_T, H, S) or M_T .

Example 2.49. Let $T \in L(\mathbb{R}^3, \mathbb{R}^2)$ defined by T(x, y, z) = (x + y, x + z). Find M_T relative to the standard bases for \mathbb{R}^3 and \mathbb{R}^2 . **Theorem 2.50.** Let $H = \{u_1, u_2, \dots, u_m\}$ be a basis for U and $S = \{v_1, v_2, \dots, v_n\}$ be a basis for V. Let $T \in L(U, V)$ and $u \in U$. Let $X = (x_1, x_2, \dots, x_m)$, and $Y = (y_1, y_2, \dots, y_n)$ be vector coordinates of u and T(u) with respect to the bases H and S, respectively. Let M_T be a matrix of T relative to the bases H and S. Then $Y = XM_T$.

Remark 2.51. Let $G = \{u_1, u_2, \dots, u_m\}$, $H = \{v_1, v_2, \dots, v_n\}$ and $J = \{w_1, w_2, \dots, w_p\}$ be bases for vector spaces U, V and W over \mathbb{F} , respectively. Let $T \in L(U, V)$ and $S \in L(V, W)$. Let M_T be a matrix of T relative to the bases G and H. Let M_S be a matrix of S relative to the bases H and J. Then the matrix of $S \circ T$ relative to the bases G and J is $M_T M_S($ i.e. $M_{S \circ T} = M_T M_S)$.

Remark 2.52. Let $G = \{u_1, u_2, \dots, u_m\}$ and $H = \{v_1, v_2, \dots, v_n\}$ be bases for vector spaces U and V over \mathbb{F} , respectively. Let $T, S \in L(U, V)$ and $r \in \mathbb{F}$. Let M_T, M_S, M_{S+T} , and M_{rT} be matrices of T, S, S + T, and rT relative to the bases G and H, respectively. Then

- (1) $M_{S+T} = M_S + M_T$.
- (2) $M_{rT} = rM_T$.

Remark 2.53. Let U and V be finite dimensional vector spaces over \mathbb{F} and $T \in L(U, V)$. T is an isomorphism if and only if the matrix for T relative to any pair of bases of U and V is invertible.

Theorem 2.54. Let U be a finite dimensional vector space over \mathbb{F} and $T, S \in L(U, U)$. If $S \circ T = I$, then $T \circ S = I$.

Theorem 2.55. Let \mathbb{F} be any field and $M \in M_{m \times n}(\mathbb{F})$. Then there exist a linear transformation $T \in L(\mathbb{F}^m, \mathbb{F}^n)$ such that the matrix for T relative to standard bases for \mathbb{F}^m and \mathbb{F}^n is M (i.e. $M_T = M$).

Theorem 2.56. Let M and N be $n \times n$ matrices over a field \mathbb{F} . If MN = I, then NM = I.

Theorem 2.57. Let U and V be finite dimensional vector spaces over \mathbb{F} such that dim U = m and dim V = n. Let $T \in L(U, V)$ such that dim ImT = r. Then there exist bases for U and V such that the matrix for T relative to these bases is $M_T = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$. (This form is called a Normal form").

Example 2.58. Let $T \in L(\mathbb{R}^3, \mathbb{R}^2)$ defined by T(x, y, z) = (x + y, x + z). Find bases for \mathbb{R}^3 and \mathbb{R}^2 for which the matrix for T relative to these bases is of normal form.

Remark 2.59. Let $M, M^* \in M_{m \times n}(\mathbb{F})$ and let $\dim U = m$ and $\dim V = n$. Then M and M^* are matrices for a linear transformation $T \in L(U, V)$ relative to distinct pair of bases of U and V if and only if there exist invertible matrices $P \in M_{m \times m}(\mathbb{F})$ and $Q \in M_{n \times n}(\mathbb{F})$ such that $M^* = PMQ^{-1}$.