Linear Algebra II

Dr. Sanhan M. S. Khasraw
Salahaddin University-Erbil
College of Education
Department of Mathematics
Second Year
Spring 2023-2024

1 Vector Spaces

2 Linear Transformations

3 Eigenvalues and Eigenvectors

Definition 3.1 (Eigenvector). Suppose $T: U \rightarrow U$ is a linear transformation of U. A vector $u \in U$ is an eigenvector of T with respect to $\lambda \in \mathbb{F}$ if $T(u)=\lambda u$.
Example 3.2. Let $U=\mathbb{R}^{2}$ and $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ defined by $T(x, y)=(x+$ $y, 2 y)$. Determine some eigenvectors of T.

Note that $u=0$ is an eigenvector of T with respect to any $\lambda \in \mathbb{F}$. Indeed, $T(0)=0=\lambda 0$, so the condition holds, and 0 is an eigenvector with respect to λ. Interestingly, in all other cases the scalar λ that works for an eigenvector u is unique.

Theorem 3.3. Suppose $u \neq 0$ is an eigenvector for a linear transformation $T: U \rightarrow U$. Then there is only one $\lambda \in \mathbb{F}$ such that $T(u)=\lambda u$.

Definition 3.4 (Eigenvalue). A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of a linear transformation $T: U \rightarrow U$ if $T(u)=\lambda u$ for a nonzero eigenvector $u \in U$.

Example 3.5. Let $U=\{f: f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function $\}$ and $\mathbb{F}=\mathbb{R}$. Let $T \in L(U, U)$ defined by $T(f)=f^{\prime}$. Determine some eigenvalues of T.

Theorem 3.6. Let U be an n-dimensional vector space over \mathbb{F} and $T \in$ $L(U, U)$. Let M and M^{*} be matrices of T associate with bases $G=\left\{u_{1}, \cdots, u_{n}\right\}, G^{*}=$ $\left\{u_{1}^{*}, \cdots, u_{n}^{*}\right\}$ for U, respectively. Then for each $\lambda \in \mathbb{F},\left|M-\lambda I_{n}\right|=\mid M^{*}-$ $\lambda I_{n} \mid$, where I_{n} is an n-by-n identity matrix.

Definition 3.7 (Characteristic polynomial). Let U be an n-dimensional vector space over \mathbb{F} and $T \in L(U, U)$. Let M be a matrix of T associate with any basis for U. The determinant $\Delta(t):=\left|M-t I_{n}\right|=(-1)^{n} t^{n}+b_{n-1} t^{n-1}+$ $\cdots+b_{1} t+b_{0}$ is called the characteristic polynomial of T.

Example 3.8. Let $U=\mathbb{R}^{2}$ and $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ defined by $T(x, y)=(y,-x)$. Find characteristic polynomial of T.

Theorem 3.9. Let U be an n-dimensional vector space over $\mathbb{F}, T \in L(U, U)$ and $\Delta(t)$ be the characteristic polynomial of T. Then λ is an eigenvalue of T if and only if λ is a root of $\Delta(t)$, that is, $\Delta(\lambda)=0$.

Example 3.10. In Example 3.8, $\Delta(t)=t^{2}+1 . \Delta(t) \neq 0 \forall t \in \mathbb{R}$. Therefore, T has no eigenvalues.

Example 3.11. Let $U=\mathbb{R}^{2}$ and $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ defined by $T(x, y)=(x+$ $y, 2 y)$. Find eigenvalues and eigenvectors of T.

Example 3.12. Let $U=\mathbb{C}^{2}, \mathbb{F}=\mathbb{C}$ and $T \in L\left(\mathbb{C}^{2}, \mathbb{C}^{2}\right)$ defined by $T(x, y)=$ $(y,-x)$. Find eigenvalues and eigenvectors of T.

Example 3.13. Let $U=\mathbb{C}^{2}, \mathbb{F}=\mathbb{R}$ and $T \in L\left(\mathbb{C}^{2}, \mathbb{C}^{2}\right)$ defined by $T(x, y)=$ $(y,-x)$. Find eigenvalues and eigenvectors of T.

Remark 3.14. Let U be an n-dimensional vector space over \mathbb{F} and $T \in$ $L(U, U)$. Then T has at most n distinct eigenvalues.

Definition 3.15 (Eigenspace). Suppose $\lambda \in \mathbb{F}$. The eigenspace of T : $U \rightarrow U$ corresponding to λ is the following set:

$$
U_{\lambda}=\{u \in U: T(u)=\lambda u\} .
$$

Theorem 3.16. The subset U_{λ} is a subspace of U for all $\lambda \in \mathbb{F}$. Furthermore, $U_{\lambda}=\operatorname{ker}(T-\lambda I)$, where I is the identity transformation.

We note that $U_{\lambda} \neq 0$ if and only if λ is an eigenvalue of T. This leads to a practical method of computing eigenvalues and eigenvectors of T. Note that λ is an eigenvalue of T if and only if $U_{\lambda} \neq 0$, that is, if U_{λ} contains nonzero vectors. Hence we have the following result.

Theorem 3.17. A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of T if and only if $\operatorname{ker}(T-$ $\lambda I) \neq 0$.

Definition 3.18 (Geometric multiplicity). Let U be vector space over \mathbb{F}, $T \in L(U, U)$ and λ be an eigenvalue of T. The dimension of U_{λ} is called the geometric multiplicity of λ and denoted by $G M(\lambda)$.

Definition 3.19 (Algebraic multiplicity). Let U be an n-dimensional vector space over $\mathbb{F}, T \in L(U, U)$ and λ is an eigenvalue of T. The algebraic multiplicity of λ is defined to be its multiplicity as a root of the characteristic polynomial of T, and denoted by $A M(\lambda)$.

Remark 3.20. $A M(\lambda)=n$ if and only if $\Delta(t)=(t-\lambda)^{n} g(t)$, where $g(t)$ is a polynomial of t and $g(\lambda) \neq 0$.

Example 3.21. Let $U=\mathbb{R}^{2}$ and $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ defined by $T(x, y)=(x, x+$ y). Find algebraic multiplicity and geometric multiplicity of each eigenvalue of T.

Theorem 3.22. Let U be an n-dimensional vector space over $\mathbb{F}, T \in L(U, U)$ and λ is an eigenvalue of T. Then $G M(\lambda) \leq A M(\lambda)$.

Theorem 3.23. Let U be an n-dimensional vector space over $\mathbb{F}, T \in L(U, U)$ and λ is an eigenvalue of T. If $A M(\lambda)=1$, then $G M(\lambda)=1$.

Theorem 3.24. Let U be a vector space over \mathbb{F} and $T \in L(U, U)$. Let u_{1}, \cdots, u_{m} be eigenvectors of T associate with distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{m}$. Then $\left\{u_{1}, \cdots, u_{m}\right\}$ is linearly independent.

Theorem 3.25. Let U be a vector space over \mathbb{F} and $T \in L(U, U)$. Let λ and σ be distinct eigenvalues of T. Then $U_{\lambda} \cap U_{\sigma}=\{0\}$.

Definition 3.26. Let U be a finite dimensional vector space over \mathbb{F} and $T \in L(U, U)$. A basis S of U diagonalizes T if the matrix of T with respect to S is a diagonal matrix.

Definition 3.27 (Diagonalizable). Let U be a vector space over \mathbb{F} and $T \in L(U, U)$. If there exist a basis S of U which diagonalizes T, then T is said to be diagonalizable.

Example 3.28. Let $U=\mathbb{R}^{2}$ and $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ defined by $T(x, y)=(y, x)$. Let $S_{1}=\{(1,0),(0,1)\}, S_{2}=\{(0,1),(1,0)\}, S_{3}=\{(1,1),(2,3)\}$ and $S_{4}=$ $\{(1,1),(1,-1)\}$. Which of these bases diagonalizes T.

Remark 3.29. Let U be an n-dimensional vector space over \mathbb{F} and $T \in$ $L(U, U) . T$ is diagonalizable if and only if

1. The characteristic polynomial of $T, \Delta(t)$, must be of the form $\Delta(t)=$ $\alpha\left(t-\lambda_{1}\right)^{r_{1}} \cdots\left(t-\lambda_{k}\right)^{r_{k}}$, where $r_{1}+\cdots+r_{k}=n, \lambda_{i} \in \mathbb{F}, \lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$, and $\alpha \in \mathbb{F}-\{0\}$.
2. For each eigenvalue λ_{i} of $T, A M\left(\lambda_{i}\right)=G M\left(\lambda_{i}\right)$ for $i=1, \cdots, k$.

Example 3.30. In Example 3.11, T is a diagnalizable since it satisfies the conditions of Remark 3.29.

Example 3.31. In Example 3.21, T is not diagnalizable since $A M(1) \neq$ $G M(1)$.

Example 3.32. In Example 3.8, T is not diagnalizable since $\Delta(t)=t^{2}+1 \neq$ $0 \forall t \in \mathbb{R}$.

Remark 3.33. Let U be an n-dimensional vector space over \mathbb{F} and $T \in$ $L(U, U)$. Then T is diagonalizable if and only if there exist a basis for U consisting of eigenvectors of T.

Theorem 3.34. Let U be an n-dimensional vector space over \mathbb{F} and $T \in$ $L(U, U)$. If T has n distinct eigenvalues, then T is diagonalizable.

Example 3.35. Let $U=\mathbb{R}^{2}$ and $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ defined by $T(x, y)=(y, x)$. Find a basis for \mathbb{R}^{2} which diagonalizes T.

