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1 Vector Spaces
2 Linear Transformations

3 Eigenvalues and Eigenvectors

Definition 3.1 (Eigenvector). Suppose T : U — U is a linear transforma-
tion of U. A wvector u € U is an etgenvector of T with respect to A € I if
T(u) = Au.

Example 3.2. Let U = R? and T € L(R* R?) defined by T(x,y) = (v +
y,2y). Determine some eigenvectors of T

Note that u = 0 is an eigenvector of T" with respect to any A € . Indeed,
T(0) = 0 = A0, so the condition holds, and 0 is an eigenvector with respect to
A. Interestingly, in all other cases the scalar A that works for an eigenvector
u is unique.

Theorem 3.3. Suppose u # 0 is an eigenvector for a linear transformation
T :U — U. Then there is only one A € I such that T'(u) = Au.

Definition 3.4 (Eigenvalue). A scalar A € I is an eigenvalue of a linear
transformation T : U — U if T(u) = Mu for a nonzero eigenvector u € U.

Example 3.5. Let U = {f : f : R — R is a differentiable function} and
F=R. Let T € L(U,U) defined by T(f) = f'. Determine some eigenvalues
of T.



Theorem 3.6. Let U be an n-dimensional vector space over I and T €
L(U,U). Let M and M* be matrices of T associate with bases G = {uy,- -+ ,u,}, G* =
{uy, - ,ut} for U, respectively. Then for each X € ¥, |M — \I,| = |M* —

M|, where I, is an n-by-n identity matriz.

Definition 3.7 (Characteristic polynomial). Let U be an n-dimensional
vector space over I and T' € L(U,U). Let M be a matriz of T associate with
any basis for U. The determinant A(t) :== |M —tI,| = (=1)"t" 4+ b, _1t" ' +
<o+ 4 byt 4+ by is called the characteristic polynomzial of T.

Example 3.8. Let U = R? and T € L(R? R?) defined by T(x,y) = (y, —x).
Find characteristic polynomial of T

Theorem 3.9. Let U be an n-dimensional vector space over ¥, T € L(U,U)
and A(t) be the characteristic polynomial of T. Then X is an eigenvalue of
T if and only if X is a root of A(t), that is, A(X) = 0.



Example 3.10. In Ezample 3.8, A(t) = t*+1. A(t) # 0Vt € R. Therefore,
T has no eigenvalues.

Example 3.11. Let U = R? and T € L(R? R?) defined by T(x,y) = (z +
y,2y). Find eigenvalues and eigenvectors of T.

Example 3.12. Let U = C*, I = C and T € L(C? C?) defined by T(z,y) =
(y,—x). Find eigenvalues and eigenvectors of T.

Example 3.13. Let U = C?, F = R and T € L(C? C?) defined by T(z,y) =
(y, —x). Find eigenvalues and eigenvectors of T.



Remark 3.14. Let U be an n-dimensional vector space over F and T €
L(U,U). Then T has at most n distinct eigenvalues.

Definition 3.15 (Eigenspace). Suppose A € . The eigenspace of T :
U — U corresponding to A is the following set:

Uy={ueU:T(u)=u}.

Theorem 3.16. The subset Uy is a subspace of U for all X € F. Further-
more, Uy = ker(T — \I), where I is the identity transformation.

We note that U, # 0 if and only if A is an eigenvalue of T'. This leads to a
practical method of computing eigenvalues and eigenvectors of T'. Note that
A is an eigenvalue of T' if and only if U, # 0, that is, if U, contains nonzero
vectors. Hence we have the following result.

Theorem 3.17. A scalar A € F is an eigenvalue of T if and only if ker(T —
M) #0. O

Definition 3.18 (Geometric multiplicity). Let U be vector space over I,
T € L(U,U) and X be an eigenvalue of T'. The dimension of Uy is called the
geometric multiplicity of A and denoted by GM(\).

Definition 3.19 (Algebraic multiplicity). Let U be an n-dimensional vec-
tor space over B, T € L(U,U) and X is an eigenvalue of T. The algebraic
multiplicity of \ is defined to be its multiplicity as a root of the character-
istic polynomial of T', and denoted by AM(N).

Remark 3.20. AM(\) = n if and only if A(t) = (t — \)"g(t), where g(t) is
a polynomial of t and g(\) # 0.

Example 3.21. Let U = R? and T € L(R? R?) defined by T(z,y) = (z,r+
y). Find algebraic multiplicity and geometric multiplicity of each eigenvalue

of T.



Theorem 3.22. Let U be an n-dimensional vector space over ¥, T € L(U,U)
and X is an eigenvalue of T. Then GM(X) < AM(M).

Theorem 3.23. Let U be an n-dimensional vector space over ¥, T € L(U,U)
and X is an eigenvalue of T. If AM(X) =1, then GM(X) = 1.

Theorem 3.24. Let U be a vector space over F and T € L(U,U). Let
Uy, -, Uy be eigenvectors of T associate with distinct eigenvalues Ay, -+, A\p,.
Then {uy, -+ ,up,} is linearly independent.



Theorem 3.25. Let U be a vector space over F and T' € L(U,U). Let \ and
o be distinct eigenvalues of T. Then Uy N U, = {0}.

Definition 3.26. Let U be a finite dimensional vector space over I and
T € L(U,U). A basis S of U diagonalizes T if the matriz of T with respect
to S is a diagonal matriz.

Definition 3.27 (Diagonalizable). Let U be a vector space over F and
T € L(U,U). If there exist a basis S of U which diagonalizes T, then T is
said to be diagonalizable.

Example 3.28. Let U = R? and T € L(R?, R?) defined by T(z,y) = (y, ).
Let S; = {(1,0),(0, 1)}, Sy = {(0,1),(1,0)}, S3 = {(1,1),(2,3)} and Sy =
{(1,1),(1,—1)}. Which of these bases diagonalizes T .



Remark 3.29. Let U be an n-dimensional vector space over F and T €
L(U,U). T is diagonalizable if and only if

1. The characteristic polynomial of T, A(t), must be of the form A(t) =
alt — M) (= A)™, where ry + -+ 1, =n, N € F, N # )
whenever i # j, and o € F — {0}.

2. For each eigenvalue \; of T, AM(N\;) = GM(\;) fori=1,--- k.

Example 3.30. In Example 3.11, T is a diagnalizable since it satisfies the
conditions of Remark 3.29.

Example 3.31. In Ezample 3.21, T is not diagnalizable since AM (1) #
GM(1).

Example 3.32. In Example 5.8, T is not diagnalizable since A(t) = t>+1 #
0VvteR.

Remark 3.33. Let U be an n-dimensional vector space over I and T €
L(U,U). Then T is diagonalizable if and only if there exist a basis for U
consisting of eigenvectors of T'.

Theorem 3.34. Let U be an n-dimensional vector space over I and T €
L(U,U). If T has n distinct eigenvalues, then T is diagonalizable.



Example 3.35. Let U = R? and T € L(R?, R?) defined by T(z,y) = (y, ).
Find a basis for R?* which diagonalizes T.



