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1 Vector Spaces

2 Linear Transformations

3 Eigenvalues and Eigenvectors

Definition 3.1 (Eigenvector). Suppose T : U → U is a linear transforma-
tion of U . A vector u ∈ U is an eigenvector of T with respect to λ ∈ F if
T (u) = λu.

Example 3.2. Let U = R2 and T ∈ L(R2,R2) defined by T (x, y) = (x +
y, 2y). Determine some eigenvectors of T .

Note that u = 0 is an eigenvector of T with respect to any λ ∈ F. Indeed,
T (0) = 0 = λ0, so the condition holds, and 0 is an eigenvector with respect to
λ. Interestingly, in all other cases the scalar λ that works for an eigenvector
u is unique.

Theorem 3.3. Suppose u ̸= 0 is an eigenvector for a linear transformation
T : U → U . Then there is only one λ ∈ F such that T (u) = λu.

Definition 3.4 (Eigenvalue). A scalar λ ∈ F is an eigenvalue of a linear
transformation T : U → U if T (u) = λu for a nonzero eigenvector u ∈ U .

Example 3.5. Let U = {f : f : R → R is a differentiable function} and
F = R. Let T ∈ L(U,U) defined by T (f) = f ′. Determine some eigenvalues
of T .
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Theorem 3.6. Let U be an n-dimensional vector space over F and T ∈
L(U,U). LetM and M∗ be matrices of T associate with bases G = {u1, · · · , un}, G∗ =
{u∗

1, · · · , u∗
n} for U , respectively. Then for each λ ∈ F, |M − λIn| = |M∗ −

λIn|, where In is an n-by-n identity matrix.

Definition 3.7 (Characteristic polynomial). Let U be an n-dimensional
vector space over F and T ∈ L(U,U). Let M be a matrix of T associate with
any basis for U . The determinant ∆(t) := |M − tIn| = (−1)ntn + bn−1t

n−1 +
· · ·+ b1t+ b0 is called the characteristic polynomial of T .

Example 3.8. Let U = R2 and T ∈ L(R2,R2) defined by T (x, y) = (y,−x).
Find characteristic polynomial of T .

Theorem 3.9. Let U be an n-dimensional vector space over F, T ∈ L(U,U)
and ∆(t) be the characteristic polynomial of T . Then λ is an eigenvalue of
T if and only if λ is a root of ∆(t), that is, ∆(λ) = 0.
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Example 3.10. In Example 3.8, ∆(t) = t2+1. ∆(t) ̸= 0 ∀t ∈ R. Therefore,
T has no eigenvalues.

Example 3.11. Let U = R2 and T ∈ L(R2,R2) defined by T (x, y) = (x +
y, 2y). Find eigenvalues and eigenvectors of T .

Example 3.12. Let U = C2, F = C and T ∈ L(C2,C2) defined by T (x, y) =
(y,−x). Find eigenvalues and eigenvectors of T .

Example 3.13. Let U = C2, F = R and T ∈ L(C2,C2) defined by T (x, y) =
(y,−x). Find eigenvalues and eigenvectors of T .
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Remark 3.14. Let U be an n-dimensional vector space over F and T ∈
L(U,U). Then T has at most n distinct eigenvalues.

Definition 3.15 (Eigenspace). Suppose λ ∈ F. The eigenspace of T :
U → U corresponding to λ is the following set:

Uλ = {u ∈ U : T (u) = λu}.

Theorem 3.16. The subset Uλ is a subspace of U for all λ ∈ F. Further-
more, Uλ = ker(T − λI), where I is the identity transformation.

We note that Uλ ̸= 0 if and only if λ is an eigenvalue of T . This leads to a
practical method of computing eigenvalues and eigenvectors of T . Note that
λ is an eigenvalue of T if and only if Uλ ̸= 0, that is, if Uλ contains nonzero
vectors. Hence we have the following result.

Theorem 3.17. A scalar λ ∈ F is an eigenvalue of T if and only if ker(T −
λI) ̸= 0.

Definition 3.18 (Geometric multiplicity). Let U be vector space over F,
T ∈ L(U,U) and λ be an eigenvalue of T . The dimension of Uλ is called the
geometric multiplicity of λ and denoted by GM(λ).

Definition 3.19 (Algebraic multiplicity). Let U be an n-dimensional vec-
tor space over F, T ∈ L(U,U) and λ is an eigenvalue of T . The algebraic
multiplicity of λ is defined to be its multiplicity as a root of the character-
istic polynomial of T , and denoted by AM(λ).

Remark 3.20. AM(λ) = n if and only if ∆(t) = (t− λ)ng(t), where g(t) is
a polynomial of t and g(λ) ̸= 0.

Example 3.21. Let U = R2 and T ∈ L(R2,R2) defined by T (x, y) = (x, x+
y). Find algebraic multiplicity and geometric multiplicity of each eigenvalue
of T .
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Theorem 3.22. Let U be an n-dimensional vector space over F, T ∈ L(U,U)
and λ is an eigenvalue of T . Then GM(λ) ≤ AM(λ).

Theorem 3.23. Let U be an n-dimensional vector space over F, T ∈ L(U,U)
and λ is an eigenvalue of T . If AM(λ) = 1, then GM(λ) = 1.

Theorem 3.24. Let U be a vector space over F and T ∈ L(U,U). Let
u1, · · · , um be eigenvectors of T associate with distinct eigenvalues λ1, · · · , λm.
Then {u1, · · · , um} is linearly independent.
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Theorem 3.25. Let U be a vector space over F and T ∈ L(U,U). Let λ and
σ be distinct eigenvalues of T . Then Uλ ∩ Uσ = {0}.

Definition 3.26. Let U be a finite dimensional vector space over F and
T ∈ L(U,U). A basis S of U diagonalizes T if the matrix of T with respect
to S is a diagonal matrix.

Definition 3.27 (Diagonalizable). Let U be a vector space over F and
T ∈ L(U,U). If there exist a basis S of U which diagonalizes T , then T is
said to be diagonalizable.

Example 3.28. Let U = R2 and T ∈ L(R2,R2) defined by T (x, y) = (y, x).
Let S1 = {(1, 0), (0, 1)}, S2 = {(0, 1), (1, 0)}, S3 = {(1, 1), (2, 3)} and S4 =
{(1, 1), (1,−1)}. Which of these bases diagonalizes T .
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Remark 3.29. Let U be an n-dimensional vector space over F and T ∈
L(U,U). T is diagonalizable if and only if

1. The characteristic polynomial of T , ∆(t), must be of the form ∆(t) =
α(t − λ1)

r1 · · · (t − λk)
rk , where r1 + · · · + rk = n, λi ∈ F, λi ̸= λj

whenever i ̸= j, and α ∈ F− {0}.

2. For each eigenvalue λi of T , AM(λi) = GM(λi) for i = 1, · · · , k.

Example 3.30. In Example 3.11, T is a diagnalizable since it satisfies the
conditions of Remark 3.29.

Example 3.31. In Example 3.21, T is not diagnalizable since AM(1) ̸=
GM(1).

Example 3.32. In Example 3.8, T is not diagnalizable since ∆(t) = t2+1 ̸=
0 ∀t ∈ R.

Remark 3.33. Let U be an n-dimensional vector space over F and T ∈
L(U,U). Then T is diagonalizable if and only if there exist a basis for U
consisting of eigenvectors of T .

Theorem 3.34. Let U be an n-dimensional vector space over F and T ∈
L(U,U). If T has n distinct eigenvalues, then T is diagonalizable.
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Example 3.35. Let U = R2 and T ∈ L(R2,R2) defined by T (x, y) = (y, x).
Find a basis for R2 which diagonalizes T .
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