Linear Algebra II

Dr. Sanhan M. S. Khasraw

Salahaddin University-Erbil College of Education Department of Mathematics Second Year Spring 2023-2024

1 Vector Spaces

2 Linear Transformations

3 Eigenvalues and Eigenvectors

Definition 3.1 (Eigenvector). Suppose $T : U \to U$ is a linear transformation of U. A vector $u \in U$ is an **eigenvector** of T with respect to $\lambda \in \mathbb{F}$ if $T(u) = \lambda u$.

Example 3.2. Let $U = \mathbb{R}^2$ and $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ defined by T(x, y) = (x + y, 2y). Determine some eigenvectors of T.

Note that u = 0 is an eigenvector of T with respect to any $\lambda \in \mathbb{F}$. Indeed, $T(0) = 0 = \lambda 0$, so the condition holds, and 0 is an eigenvector with respect to λ . Interestingly, in all other cases the scalar λ that works for an eigenvector u is unique.

Theorem 3.3. Suppose $u \neq 0$ is an eigenvector for a linear transformation $T: U \rightarrow U$. Then there is only one $\lambda \in \mathbb{F}$ such that $T(u) = \lambda u$.

Definition 3.4 (Eigenvalue). A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of a linear transformation $T: U \to U$ if $T(u) = \lambda u$ for a nonzero eigenvector $u \in U$.

Example 3.5. Let $U = \{f : f : \mathbb{R} \to \mathbb{R} \text{ is a differentiable function}\}$ and $\mathbb{F} = \mathbb{R}$. Let $T \in L(U, U)$ defined by T(f) = f'. Determine some eigenvalues of T.

Theorem 3.6. Let U be an n-dimensional vector space over \mathbb{F} and $T \in L(U,U)$. Let M and M^{*} be matrices of T associate with bases $G = \{u_1, \dots, u_n\}, G^* = \{u_1^*, \dots, u_n^*\}$ for U, respectively. Then for each $\lambda \in \mathbb{F}$, $|M - \lambda I_n| = |M^* - \lambda I_n|$, where I_n is an n-by-n identity matrix.

Definition 3.7 (Characteristic polynomial). Let U be an n-dimensional vector space over \mathbb{F} and $T \in L(U, U)$. Let M be a matrix of T associate with any basis for U. The determinant $\Delta(t) := |M - tI_n| = (-1)^n t^n + b_{n-1} t^{n-1} + \cdots + b_1 t + b_0$ is called the **characteristic polynomial** of T.

Example 3.8. Let $U = \mathbb{R}^2$ and $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ defined by T(x, y) = (y, -x). Find characteristic polynomial of T.

Theorem 3.9. Let U be an n-dimensional vector space over \mathbb{F} , $T \in L(U, U)$ and $\Delta(t)$ be the characteristic polynomial of T. Then λ is an eigenvalue of T if and only if λ is a root of $\Delta(t)$, that is, $\Delta(\lambda) = 0$. **Example 3.10.** In Example 3.8, $\Delta(t) = t^2 + 1$. $\Delta(t) \neq 0 \ \forall t \in \mathbb{R}$. Therefore, T has no eigenvalues.

Example 3.11. Let $U = \mathbb{R}^2$ and $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ defined by T(x, y) = (x + y, 2y). Find eigenvalues and eigenvectors of T.

Example 3.12. Let $U = \mathbb{C}^2$, $\mathbb{F} = \mathbb{C}$ and $T \in L(\mathbb{C}^2, \mathbb{C}^2)$ defined by T(x, y) = (y, -x). Find eigenvalues and eigenvectors of T.

Example 3.13. Let $U = \mathbb{C}^2$, $\mathbb{F} = \mathbb{R}$ and $T \in L(\mathbb{C}^2, \mathbb{C}^2)$ defined by T(x, y) = (y, -x). Find eigenvalues and eigenvectors of T.

Remark 3.14. Let U be an n-dimensional vector space over \mathbb{F} and $T \in L(U, U)$. Then T has at most n distinct eigenvalues.

Definition 3.15 (Eigenspace). Suppose $\lambda \in \mathbb{F}$. The eigenspace of $T : U \to U$ corresponding to λ is the following set:

$$U_{\lambda} = \{ u \in U : T(u) = \lambda u \}.$$

Theorem 3.16. The subset U_{λ} is a subspace of U for all $\lambda \in \mathbb{F}$. Furthermore, $U_{\lambda} = \ker(T - \lambda I)$, where I is the identity transformation.

We note that $U_{\lambda} \neq 0$ if and only if λ is an eigenvalue of T. This leads to a practical method of computing eigenvalues and eigenvectors of T. Note that λ is an eigenvalue of T if and only if $U_{\lambda} \neq 0$, that is, if U_{λ} contains nonzero vectors. Hence we have the following result.

Theorem 3.17. A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of T if and only if ker $(T - \lambda I) \neq 0$.

Definition 3.18 (Geometric multiplicity). Let U be vector space over \mathbb{F} , $T \in L(U, U)$ and λ be an eigenvalue of T. The dimension of U_{λ} is called the *geometric multiplicity* of λ and denoted by $GM(\lambda)$.

Definition 3.19 (Algebraic multiplicity). Let U be an n-dimensional vector space over \mathbb{F} , $T \in L(U, U)$ and λ is an eigenvalue of T. The algebraic multiplicity of λ is defined to be its multiplicity as a root of the characteristic polynomial of T, and denoted by $AM(\lambda)$.

Remark 3.20. $AM(\lambda) = n$ if and only if $\Delta(t) = (t - \lambda)^n g(t)$, where g(t) is a polynomial of t and $g(\lambda) \neq 0$.

Example 3.21. Let $U = \mathbb{R}^2$ and $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ defined by T(x, y) = (x, x + y). Find algebraic multiplicity and geometric multiplicity of each eigenvalue of T.

Theorem 3.22. Let U be an n-dimensional vector space over \mathbb{F} , $T \in L(U, U)$ and λ is an eigenvalue of T. Then $GM(\lambda) \leq AM(\lambda)$.

Theorem 3.23. Let U be an n-dimensional vector space over \mathbb{F} , $T \in L(U, U)$ and λ is an eigenvalue of T. If $AM(\lambda) = 1$, then $GM(\lambda) = 1$.

Theorem 3.24. Let U be a vector space over \mathbb{F} and $T \in L(U,U)$. Let u_1, \dots, u_m be eigenvectors of T associate with distinct eigenvalues $\lambda_1, \dots, \lambda_m$. Then $\{u_1, \dots, u_m\}$ is linearly independent.

Theorem 3.25. Let U be a vector space over \mathbb{F} and $T \in L(U, U)$. Let λ and σ be distinct eigenvalues of T. Then $U_{\lambda} \cap U_{\sigma} = \{0\}$.

Definition 3.26. Let U be a finite dimensional vector space over \mathbb{F} and $T \in L(U, U)$. A basis S of U **diagonalizes** T if the matrix of T with respect to S is a diagonal matrix.

Definition 3.27 (Diagonalizable). Let U be a vector space over \mathbb{F} and $T \in L(U, U)$. If there exist a basis S of U which diagonalizes T, then T is said to be **diagonalizable**.

Example 3.28. Let $U = \mathbb{R}^2$ and $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ defined by T(x, y) = (y, x). Let $S_1 = \{(1,0), (0,1)\}, S_2 = \{(0,1), (1,0)\}, S_3 = \{(1,1), (2,3)\}$ and $S_4 = \{(1,1), (1,-1)\}$. Which of these bases diagonalizes T. **Remark 3.29.** Let U be an n-dimensional vector space over \mathbb{F} and $T \in L(U, U)$. T is diagonalizable if and only if

- 1. The characteristic polynomial of T, $\Delta(t)$, must be of the form $\Delta(t) = \alpha(t \lambda_1)^{r_1} \cdots (t \lambda_k)^{r_k}$, where $r_1 + \cdots + r_k = n$, $\lambda_i \in \mathbb{F}$, $\lambda_i \neq \lambda_j$ whenever $i \neq j$, and $\alpha \in \mathbb{F} - \{0\}$.
- 2. For each eigenvalue λ_i of T, $AM(\lambda_i) = GM(\lambda_i)$ for $i = 1, \dots, k$.

Example 3.30. In Example 3.11, T is a diagnalizable since it satisfies the conditions of Remark 3.29.

Example 3.31. In Example 3.21, T is not diagnalizable since $AM(1) \neq GM(1)$.

Example 3.32. In Example 3.8, T is not diagnalizable since $\Delta(t) = t^2 + 1 \neq 0 \forall t \in \mathbb{R}$.

Remark 3.33. Let U be an n-dimensional vector space over \mathbb{F} and $T \in L(U,U)$. Then T is diagonalizable if and only if there exist a basis for U consisting of eigenvectors of T.

Theorem 3.34. Let U be an n-dimensional vector space over \mathbb{F} and $T \in L(U, U)$. If T has n distinct eigenvalues, then T is diagonalizable.

Example 3.35. Let $U = \mathbb{R}^2$ and $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ defined by T(x, y) = (y, x). Find a basis for \mathbb{R}^2 which diagonalizes T.