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1 Vector Spaces
2 Linear Transformations
3 Eigenvalues and Eigenvectors

4 FEuclidean Vector Spaces

Definition 4.1 (Inner Product). Let U be any real vector space. An inner
product on U is a function (,) : U x U — R that assigns to each pairs of
vectors u,v of U a real number (u,v) satisfying

1. For all u,v € U, (u,v) = (v, u).

2. For all u,v € U and r € R, (ru,v) = r{u,v).

3. For all u,v,w € U, {(u+ v,w) = (u,w) + (v, w).
4. For allu e U,

(i) {u,u) =0,
(17) If (u,u) =0, then u = 0.

Example 4.2. Let U = R? and u = (x1,22),v = (y1,y2) € R?. Define
() :R*xR?* = R by (u,v) = x1y1 + T2ys. Show that {,) is an inner product
on R?. (It is called standard inner product on R?)



Example 4.3. Let U = R? and u = (x1,22),v = (y1,42) € R?. Define
() :R2x R? = R by (u,v) = 11y — Toy1 — 21Y2 + 3T2ys. Show that () is
an inner product on R2.

Example 4.4. Let U = R™ and uw = (21, - ,2,),v = (Y1, ,Yn) € R
Define (,) : R" x R™ — R by (u,v) = z1y1 + - - - + TpYn. Show that (,) is an
inner product on R™. (1t is called standard inner product on R")

Example 4.5. Let U = P,(R) and u(x),v(z) € P,(R). Define (,) : P,(R) x
P,(R) — R by (u(x),v(x)) = fol uw(z)v(z)dx. Show that (,) is an inner
product on P,(R). (It is called standard inner product on P,(R))

Example 4.6. Let U = M,,,(R) and u = (a;;),v = (b;j) € Myn(R). Define
(.} Mypn(R) X My (R) — R by (u,v) = 377 370, aizhij. Show that ()
is an inner product on M,,,(R). (It is called standard inner product on
Mon(R))



Example 4.7. Let U be an n-dimensional vector space over R and S =

{uy, -+ ,u,} be abasis forU. Letu,v € U. Then there exist 1, ,Tp, Y1, ,Yn €
R such that v = xyuy + -+ + Tu, and v = Yyyug + - + Yuu,. Define

(,) :UxU — R by (u,v) = x1y1 + -+ + TpYn. Show that (,) is an inner
product on U.

Theorem 4.8. Let U be any real vector space and (,) be an inner product
on U. Then for all u,v,w € U, r € R, the following is hold

1. (u,rv) = r{u,v).

2. (u,v+w) = (u,v) + (u,w).
3. (u,0) = (0,u) = 0.

4. Ifu#0, then (u,u) > 0.

Definition 4.9. A real vector space U which has defined on it an inner

product (,) is called Fuclidean vector space or inner product space.
We denote it by (U, {(,)).

Example 4.10. Let U = R? and u = (z1,72),v = (y1,92) € R?. Define
()1 :R2XR? = R by (u,v)1 = x1y1 +T2ys, by Example 4.2, (,)1 is an inner
product on R?.

Define {,)s : R2xR? — R by (u,v)s = 2191 — Toy1 — T1Y2 +312y2, by Example
4.3, {,) is an inner product on RZ.

Therefore (R?, (,)1) and (R?,{,)s) are different Euclidean vector spaces.

Theorem 4.11 (Cauchy-Schwarz inequality). If u and v are any two
vectors in an Euclidean vector space U, then (u,v)? < (u,u)(v,v).
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Definition 4.12. Let (U, (,)) be an Euclidean vector space. The length or
norm of a vector u € U defined as ||u|| = v/(u, u).

Example 4.13. Let (M (R), (,)) be an Euclidean vector space. Find || {_11 g] l].

Note 4.14. The Cauchy-Schwarz inequality can be reformulated as follows:
If u and v are any two vectors in an Euclidean vector space U, then |(u,v)| <
[lul - o]

Theorem 4.15. Let (U, (,)) be an Euclidean vector space. Then
1. Forallue U, ||lul]| >0.
2. For allu € U, ||ul| =0 if and only if u= 0.
3. Forallue U andr € R, |[rul| = |r| - ||ul|.

4. For all u,v € U, ||u+v|| <|lul]| + ||v]||. (Triangle inequality)



Definition 4.16. Let (U, {(,)) be an Euclidean vector space. The distance
between vectors u,v € U defined as d(u,v) = ||u — v|]|.

Example 4.17. Let (M (R), (,)) be an Euclidean vector space. Let

2], 21
u—21anv—_13.

Find d(u,v).

Theorem 4.18. Let (U, (,)) be an Euclidean vector space. Then

)
1. For all u,v € U,d(u,v) >
2. For all u,v € U,d(u,v) =0 if and only if u = v.
3. For all u,v € U,d(u,v) = d(v,u).

4. For all u,v,w € U,d(u,v) < d(u,w) + d(w, v).

Definition 4.19. Let u and v are any two non-zero vectors in an Fuclidean
vector space (U, {(,)). The angle 0 between u and v is defined by cos =
) here 0 < 0 < 7.

[lulllfoll”



Example 4.20. In (P (R), (,)), find the angle between u(x) = x and v(z) =
3r — 2.

Definition 4.21. Let u and v are any two vectors in an Euclidean vector

space (U, (,)). Then u and v are perpendicular or orthogonal if (u,v) =
0.

Theorem 4.22 (Pythagorean Theorem). Let u and v are any two non-
zero vectors in an Euclidean vector space (U, (,)). If u and v are perpendic-
ular, then ||u+ v||* = ||u||* + ||v]|2.

Definition 4.23. Let S be a subset of an Fuclidean vector space (U, {(,)). S
is said to be orthogonal if any two distinct vectors in S are orthogonal.

Definition 4.24. Let S be a subset of an Euclidean vector space (U, (,)).
S is said to be orthonormal if S is orthogonal and each element of S has
length 1.



Example 4.25. Let S = {(1,0,3),(—3,0,1),(0,1,0)}. Then S is an orthog-
onal basis of R with usual inner product but it is not orthonormal.

Example 4.26. Let S = {(\/iﬁ, —\%), (\/ii, \%)} Then S is an orthonormal

basis of R? with usual inner product.

Theorem 4.27. Let S = {uy,--- ,u,} be an orthogonal set of non-zero vec-
tors in an Euclidean vector space (U, {,)). Then S is linearly independent.

Theorem 4.28. Let S = {uy,--- ,u,} be an orthogonal basis of an Euclidean
(u,u1) (u,un)

vector space (U, (,)). Then for any u in U, u = -=mbuy + -+ -+ 4+ 1205 Uy,

[luall® [lunll?
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Corollary 4.29. Let S = {uy, -+ ,u,} be an orthonormal basis of an Fu-
clidean vector space (U, (,)). Then for any v in U, u = (u,us)uy + --- +
(U, Up YUy -

Example 4.30. Let uy = (1,1,1),us = (0,1, —1),u3 = (=2,1,1). Show that
S = {uy,us,uz} is a basis for R® and u = (3, —1,2) is a LC of the vectors in
S.

Remark 4.31. Let S = {uy, -+ ,u,} be an orthogonal set of non-zero vec-
tors in an Buclidean vector space (U,(,)). Then H = {qnr, -+ g} is
orthonormal and [S] = [H].

Remark 4.32 (Gram-Schmidt orthogonalization process). For every
subspace of a finite dimensional Euclidean space (U, (,)), there exist an or-
thogonal basis.

Let S = {uy,--- ,u,} be any basis to a subspace M. To transform S to an
orthogonal basis T = {vy,--- ,v,} we process as follows
Let vi = uq,
_ (ug,v1)
Vg = Uz — [v1]]? V1,
_ _ <un7'Un—1> _ (unyvn—2> . <u'n7'Ul>
Un = tn = Ty, g2 Ul T o, g2 Un2 floa 2 V1

Example 4.33. Find orthogonal basis for Pi(R) with usual inner product.
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Example 4.34. Let M be a subspace of R* that has a basis S = {(1,—2,0,1),
(—1,0,0,—1), (0,0,0,1)}. Find orthonormal basis for M with usual inner
product.

Definition 4.35. Let M be a subspace of a vector space U over F. N is said
to be complement space to M if N is a subspace and U = M & N.

Theorem 4.36. Every subspace M of a finite dimensional vector space U
has a complement space.

Example 4.37. Let M = {(z,y) : = = 3y} be a subspace of R®. Let Ny =
[{(1,0)}], No = [{(0,1)}]. Then it is clear that R> = M & N; and R? =
M & Ns.
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Definition 4.38. Let M be a subspace of an Euclidean vector space (U, (,)).
Let M+ be the set of all vectors in U which are orthogonal to every vector in

M. M+ ={uelU: {uv)=0VYve M}

Theorem 4.39. Let M be a subspace of an Euclidean vector space (U, (,)).
Then

1. M+ is a subspace.
2. Mn Mt ={0}.
3. U=Mao M.

4. (MYY: = M.

Definition 4.40. Let M be a subspace of an Euclidean vector space (U, (,)).
The space M~ is called an orthogonal complement of M.

To find M+, we process as follows
1. Find a basis {uq,--- ,u,} for M.
2. Extend {uy, - ,u,} to {ug, -+ ,uy,v1, -+, v} be a basis for U.

3. By using GSOP, find {wy, -+ ,wy, 21, , 2z} which is orthogonal basis
for U.
Therefore, M+ = [{z1,- -+ , zm}].

Example 4.41. Find an orthogonal complement to the subspace M = {(x,y) :
x — 2y = 0} of R?* with usual inner product.
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Definition 4.42. Let M be a subspace of an Euclidean vector space (U, (,))
and w € U. Then u = v +w for a unique v € M and w € M*. v is called
the projection of u on a subspace M.

Example 4.43. Find the projection of u = (3,4) on the subspace M =
{(x,y) : . — 2y = 0} of R* with usual inner product.

To find a projection of a vector u on a subspace M, we process as follows

1. Find an orthogonal basis {uy, -+ ,u,} for M.

2. Put v = fﬁlmg Up 4+ -+ fr;“ﬁg u,. Therefore, v is a projection of u on

Definition 4.44. Let (U, (,)) be an Euclidean vector space and T : U — U

be a linear transformation. T is said to be orthogonal transformation if
Vu,v € U, (T'(u),T(v)) = (u,v).

Example 4.45. Let T : R? — R? defined by T(z,y) = %(x —y,r+y),
where R? is an Buclidean vector space with usual inner product. Show that
T is an orthogonal transformation.
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Example 4.46. Let T : R?> — R? defined by T(z,y) = (z,x +y), where R?
is an Buclidean vector space with usual inner product. Show that T is not
orthogonal transformation.

Theorem 4.47. Let (U, (,)) be an Euclidean vector space and T : U — U
be a LT. The following are equivalent

1. T is an orthogonal transformation.
2. T preserves the length, Yu € U ||T(u)|| = ||u]|.

3. For all unit vector w , T(u) is a unit vector.

Theorem 4.48. Let (U, (,)) be a finite dimensional FEuclidean vector space
andT : U — U be an orthogonal transformation. Then T is an isomorphism.
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Theorem 4.49. The composition of two orthogonal transformations is an
orthogonal transformation.

Theorem 4.50. Let S = {uy,--- ,u,} be an orthonormal basis for an Eu-
clidean vector space (U, (,)) and T : U — U be an orthogonal transformation.
Let M be a matriz for T with respect to S. Then the following are hold

1. Every row of M 1is of length 1, which is regarded as a vector in R™ with
standard inner product.

2. Rows of M are orthogonal.
3. M~t=M"
4. (1) and (2) are hold for columns.

Definition 4.51. Let M € M,,,(R). M is said to be orthogonal matriz
if MM = 1.

Theorem 4.52. Let M € M,,(R) and M is an orthogonal matriz. Let
S = {uy, - ,un} be an orthonormal basis for an Euclidean vector space
(U, (,)). Then there exist an orthogonal transformation T : U — U such that
the matriz for T with respect to S is M.
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