Linear Algebra II

Dr. Sanhan M. S. Khasraw

Salahaddin University-Erbil College of Education Department of Mathematics Second Year Spring 2023-2024 1 Vector Spaces

2 Linear Transformations

3 Eigenvalues and Eigenvectors

4 Euclidean Vector Spaces

Definition 4.1 (Inner Product). Let U be any real vector space. An *inner* product on U is a function $\langle,\rangle: U \times U \to \mathbb{R}$ that assigns to each pairs of vectors u, v of U a real number $\langle u, v \rangle$ satisfying

- 1. For all $u, v \in U, \langle u, v \rangle = \langle v, u \rangle$.
- 2. For all $u, v \in U$ and $r \in \mathbb{R}, \langle ru, v \rangle = r \langle u, v \rangle$.
- 3. For all $u, v, w \in U$, $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- 4. For all $u \in U$,

(i) $\langle u, u \rangle \ge 0$, (ii) If $\langle u, u \rangle = 0$, then u = 0.

Example 4.2. Let $U = \mathbb{R}^2$ and $u = (x_1, x_2), v = (y_1, y_2) \in \mathbb{R}^2$. Define $\langle, \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $\langle u, v \rangle = x_1 y_1 + x_2 y_2$. Show that \langle, \rangle is an inner product on \mathbb{R}^2 . (It is called **standard inner product on** \mathbb{R}^2)

Example 4.3. Let $U = \mathbb{R}^2$ and $u = (x_1, x_2), v = (y_1, y_2) \in \mathbb{R}^2$. Define $\langle, \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $\langle u, v \rangle = x_1y_1 - x_2y_1 - x_1y_2 + 3x_2y_2$. Show that \langle, \rangle is an inner product on \mathbb{R}^2 .

Example 4.4. Let $U = \mathbb{R}^n$ and $u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathbb{R}^n$. Define $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $\langle u, v \rangle = x_1y_1 + \dots + x_ny_n$. Show that \langle , \rangle is an inner product on \mathbb{R}^n . (It is called **standard inner product on** \mathbb{R}^n)

Example 4.5. Let $U = P_n(\mathbb{R})$ and $u(x), v(x) \in P_n(\mathbb{R})$. Define $\langle, \rangle : P_n(\mathbb{R}) \times P_n(\mathbb{R}) \to \mathbb{R}$ by $\langle u(x), v(x) \rangle = \int_0^1 u(x)v(x)dx$. Show that \langle, \rangle is an inner product on $P_n(\mathbb{R})$. (It is called **standard inner product on** $P_n(\mathbb{R})$)

Example 4.6. Let $U = M_{mn}(\mathbb{R})$ and $u = (a_{ij}), v = (b_{ij}) \in M_{mn}(\mathbb{R})$. Define $\langle, \rangle : M_{mn}(\mathbb{R}) \times M_{mn}(\mathbb{R}) \to \mathbb{R}$ by $\langle u, v \rangle = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} b_{ij}$. Show that \langle, \rangle is an inner product on $M_{mn}(\mathbb{R})$. (It is called **standard inner product on** $M_{mn}(\mathbb{R})$)

Example 4.7. Let U be an n-dimensional vector space over \mathbb{R} and $S = \{u_1, \dots, u_n\}$ be a basis for U. Let $u, v \in U$. Then there exist $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$ such that $u = x_1u_1 + \dots + x_nu_n$ and $v = y_1u_1 + \dots + y_nu_n$. Define $\langle, \rangle : U \times U \to \mathbb{R}$ by $\langle u, v \rangle = x_1y_1 + \dots + x_ny_n$. Show that \langle, \rangle is an inner product on U.

Theorem 4.8. Let U be any real vector space and \langle, \rangle be an inner product on U. Then for all $u, v, w \in U, r \in \mathbb{R}$, the following is hold

- 1. $\langle u, rv \rangle = r \langle u, v \rangle$.
- 2. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$.

3.
$$\langle u, 0 \rangle = \langle 0, u \rangle = 0.$$

4. If $u \neq 0$, then $\langle u, u \rangle > 0$.

Definition 4.9. A real vector space U which has defined on it an inner product \langle,\rangle is called **Euclidean vector space** or **inner product space**. We denote it by $\langle U, \langle, \rangle \rangle$.

Example 4.10. Let $U = \mathbb{R}^2$ and $u = (x_1, x_2), v = (y_1, y_2) \in \mathbb{R}^2$. Define $\langle, \rangle_1 : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $\langle u, v \rangle_1 = x_1 y_1 + x_2 y_2$, by Example 4.2, \langle, \rangle_1 is an inner product on \mathbb{R}^2 .

Define $\langle , \rangle_2 : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $\langle u, v \rangle_2 = x_1 y_1 - x_2 y_1 - x_1 y_2 + 3 x_2 y_2$, by Example 4.3, \langle , \rangle_2 is an inner product on \mathbb{R}^2 .

Therefore $\langle \mathbb{R}^2, \langle , \rangle_1 \rangle$ and $\langle \mathbb{R}^2, \langle , \rangle_2 \rangle$ are different Euclidean vector spaces.

Theorem 4.11 (Cauchy-Schwarz inequality). If u and v are any two vectors in an Euclidean vector space U, then $\langle u, v \rangle^2 \leq \langle u, u \rangle \langle v, v \rangle$.

Definition 4.12. Let $\langle U, \langle, \rangle \rangle$ be an Euclidean vector space. The **length** or **norm** of a vector $u \in U$ defined as $||u|| = \sqrt{\langle u, u \rangle}$.

Example 4.13. Let $\langle M_{22}(\mathbb{R}), \langle, \rangle \rangle$ be an Euclidean vector space. Find $|| \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} ||$.

Note 4.14. The Cauchy-Schwarz inequality can be reformulated as follows: If u and v are any two vectors in an Euclidean vector space U, then $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.

Theorem 4.15. Let $\langle U, \langle, \rangle \rangle$ be an Euclidean vector space. Then

- 1. For all $u \in U$, $||u|| \ge 0$.
- 2. For all $u \in U$, ||u|| = 0 if and only if u = 0.
- 3. For all $u \in U$ and $r \in \mathbb{R}$, $||ru|| = |r| \cdot ||u||$.
- 4. For all $u, v \in U$, $||u + v|| \le ||u|| + ||v||$. (Triangle inequality)

Definition 4.16. Let $\langle U, \langle, \rangle \rangle$ be an Euclidean vector space. The **distance** between vectors $u, v \in U$ defined as d(u, v) = ||u - v||.

Example 4.17. Let $\langle M_{22}(\mathbb{R}), \langle, \rangle \rangle$ be an Euclidean vector space. Let

$$u = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} and v = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}.$$

Find d(u, v).

Theorem 4.18. Let $\langle U, \langle, \rangle \rangle$ be an Euclidean vector space. Then

- 1. For all $u, v \in U, d(u, v) \ge 0$.
- 2. For all $u, v \in U, d(u, v) = 0$ if and only if u = v.
- 3. For all $u, v \in U, d(u, v) = d(v, u)$.
- 4. For all $u, v, w \in U, d(u, v) \le d(u, w) + d(w, v)$.

Definition 4.19. Let u and v are any two non-zero vectors in an Euclidean vector space $\langle U, \langle, \rangle \rangle$. The **angle** θ between u and v is defined by $\cos\theta = \frac{\langle u, v \rangle}{||u||||v||}$, where $0 \le \theta \le \pi$.

Example 4.20. In $\langle P_1(\mathbb{R}), \langle, \rangle \rangle$, find the angle between u(x) = x and v(x) = 3x - 2.

Definition 4.21. Let u and v are any two vectors in an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Then u and v are **perpendicular** or **orthogonal** if $\langle u, v \rangle = 0$.

Theorem 4.22 (Pythagorean Theorem). Let u and v are any two nonzero vectors in an Euclidean vector space $\langle U, \langle, \rangle \rangle$. If u and v are perpendicular, then $||u+v||^2 = ||u||^2 + ||v||^2$.

Definition 4.23. Let S be a subset of an Euclidean vector space $\langle U, \langle, \rangle \rangle$. S is said to be **orthogonal** if any two distinct vectors in S are orthogonal.

Definition 4.24. Let S be a subset of an Euclidean vector space $\langle U, \langle, \rangle \rangle$. S is said to be **orthonormal** if S is orthogonal and each element of S has length 1. **Example 4.25.** Let $S = \{(1,0,3), (-3,0,1), (0,1,0)\}$. Then S is an orthogonal basis of \mathbb{R}^3 with usual inner product but it is not orthonormal.

Example 4.26. Let $S = \{(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\}$. Then S is an orthonormal basis of \mathbb{R}^2 with usual inner product.

Theorem 4.27. Let $S = \{u_1, \dots, u_n\}$ be an orthogonal set of non-zero vectors in an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Then S is linearly independent.

Theorem 4.28. Let $S = \{u_1, \dots, u_n\}$ be an orthogonal basis of an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Then for any u in U, $u = \frac{\langle u, u_1 \rangle}{||u_1||^2} u_1 + \dots + \frac{\langle u, u_n \rangle}{||u_n||^2} u_n$.

Corollary 4.29. Let $S = \{u_1, \dots, u_n\}$ be an orthonormal basis of an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Then for any u in U, $u = \langle u, u_1 \rangle u_1 + \dots + \langle u, u_n \rangle u_n$.

Example 4.30. Let $u_1 = (1, 1, 1), u_2 = (0, 1, -1), u_3 = (-2, 1, 1)$. Show that $S = \{u_1, u_2, u_3\}$ is a basis for \mathbb{R}^3 and u = (3, -1, 2) is a LC of the vectors in S.

Remark 4.31. Let $S = \{u_1, \dots, u_n\}$ be an orthogonal set of non-zero vectors in an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Then $H = \{\frac{u_1}{||u_1||}, \dots, \frac{u_n}{||u_n||}\}$ is orthonormal and [S] = [H].

Remark 4.32 (Gram-Schmidt orthogonalization process). For every subspace of a finite dimensional Euclidean space $\langle U, \langle, \rangle \rangle$, there exist an orthogonal basis. Let $S = \{u_1, \dots, u_n\}$ be any basis to a subspace M. To transform S to an

Let $S = \{u_1, \dots, u_n\}$ be any basis to a subspace M. To transform S to a orthogonal basis $T = \{v_1, \dots, v_n\}$ we process as follows Let $v_1 = u_1$, $v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{||v_1||^2} v_1$, \vdots $v_n = u_n - \frac{\langle u_n, v_{n-1} \rangle}{||v_{n-1}||^2} v_{n-1} - \frac{\langle u_n, v_{n-2} \rangle}{||v_{n-2}||^2} v_{n-2} - \dots - \frac{\langle u_n, v_1 \rangle}{||v_1||^2} v_1$.

Example 4.33. Find orthogonal basis for $P_1(\mathbb{R})$ with usual inner product.

Example 4.34. Let M be a subspace of \mathbb{R}^4 that has a basis $S = \{(1, -2, 0, 1), (-1, 0, 0, -1), (0, 0, 0, 1)\}$. Find orthonormal basis for M with usual inner product.

Definition 4.35. Let M be a subspace of a vector space U over F. N is said to be complement space to M if N is a subspace and $U = M \oplus N$.

Theorem 4.36. Every subspace M of a finite dimensional vector space U has a complement space.

Example 4.37. Let $M = \{(x, y) : x = 3y\}$ be a subspace of \mathbb{R}^2 . Let $N_1 = [\{(1, 0)\}], N_2 = [\{(0, 1)\}]$. Then it is clear that $\mathbb{R}^2 = M \oplus N_1$ and $\mathbb{R}^2 = M \oplus N_2$.

Definition 4.38. Let M be a subspace of an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Let M^{\perp} be the set of all vectors in U which are orthogonal to every vector in M. $M^{\perp} = \{u \in U : \langle u, v \rangle = 0 \ \forall v \in M\}.$

Theorem 4.39. Let M be a subspace of an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Then

- 1. M^{\perp} is a subspace.
- 2. $M \cap M^{\perp} = \{0\}.$
- 3. $U = M \oplus M^{\perp}$.
- 4. $(M^{\perp})^{\perp} = M$.

Definition 4.40. Let M be a subspace of an Euclidean vector space $\langle U, \langle, \rangle \rangle$. The space M^{\perp} is called an **orthogonal complement** of M.

To find M^{\perp} , we process as follows

- 1. Find a basis $\{u_1, \cdots, u_n\}$ for M.
- 2. Extend $\{u_1, \dots, u_n\}$ to $\{u_1, \dots, u_n, v_1, \dots, v_m\}$ be a basis for U.
- 3. By using GSOP, find $\{w_1, \cdots, w_n, z_1, \cdots, z_m\}$ which is orthogonal basis for U. Therefore, $M^{\perp} = [\{z_1, \cdots, z_m\}].$

Example 4.41. Find an orthogonal complement to the subspace $M = \{(x, y) : x - 2y = 0\}$ of \mathbb{R}^2 with usual inner product.

Definition 4.42. Let M be a subspace of an Euclidean vector space $\langle U, \langle, \rangle \rangle$ and $u \in U$. Then u = v + w for a unique $v \in M$ and $w \in M^{\perp}$. v is called the **projection** of u on a subspace M.

Example 4.43. Find the projection of u = (3, 4) on the subspace $M = \{(x, y) : x - 2y = 0\}$ of \mathbb{R}^2 with usual inner product.

To find a projection of a vector u on a subspace M, we process as follows

- 1. Find an orthogonal basis $\{u_1, \dots, u_n\}$ for M.
- 2. Put $v = \frac{\langle u, u_1 \rangle}{||u_1||^2} u_1 + \dots + \frac{\langle u, u_n \rangle}{||u_n||^2} u_n$. Therefore, v is a projection of u on M.

Definition 4.44. Let $\langle U, \langle, \rangle \rangle$ be an Euclidean vector space and $T : U \to U$ be a linear transformation. T is said to be **orthogonal transformation** if $\forall u, v \in U, \langle T(u), T(v) \rangle = \langle u, v \rangle.$

Example 4.45. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x,y) = \frac{1}{\sqrt{2}}(x-y,x+y)$, where \mathbb{R}^2 is an Euclidean vector space with usual inner product. Show that T is an orthogonal transformation.

Example 4.46. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x, x + y), where \mathbb{R}^2 is an Euclidean vector space with usual inner product. Show that T is not orthogonal transformation.

Theorem 4.47. Let $\langle U, \langle, \rangle \rangle$ be an Euclidean vector space and $T : U \to U$ be a LT. The following are equivalent

- 1. T is an orthogonal transformation.
- 2. T preserves the length, $\forall u \in U ||T(u)|| = ||u||$.
- 3. For all unit vector u, T(u) is a unit vector.

Theorem 4.48. Let $\langle U, \langle, \rangle \rangle$ be a finite dimensional Euclidean vector space and $T: U \to U$ be an orthogonal transformation. Then T is an isomorphism. **Theorem 4.49.** The composition of two orthogonal transformations is an orthogonal transformation.

Theorem 4.50. Let $S = \{u_1, \dots, u_n\}$ be an orthonormal basis for an Euclidean vector space $\langle U, \langle, \rangle \rangle$ and $T : U \to U$ be an orthogonal transformation. Let M be a matrix for T with respect to S. Then the following are hold

- 1. Every row of M is of length 1, which is regarded as a vector in \mathbb{R}^n with standard inner product.
- 2. Rows of M are orthogonal.
- 3. $M^{-1} = M^t$.
- 4. (1) and (2) are hold for columns.

Definition 4.51. Let $M \in M_{nn}(\mathbb{R})$. M is said to be orthogonal matrix if $MM^t = I$.

Theorem 4.52. Let $M \in M_{nn}(\mathbb{R})$ and M is an orthogonal matrix. Let $S = \{u_1, \dots, u_n\}$ be an orthonormal basis for an Euclidean vector space $\langle U, \langle, \rangle \rangle$. Then there exist an orthogonal transformation $T : U \to U$ such that the matrix for T with respect to S is M.