Linear Algebra II

Dr. Sanhan M. S. Khasraw
Salahaddin University-Erbil
College of Education
Department of Mathematics
Second Year
Spring 2023-2024

1 Vector Spaces

2 Linear Transformations

3 Eigenvalues and Eigenvectors

4 Euclidean Vector Spaces

Definition 4.1 (Inner Product). Let U be any real vector space. An inner product on U is a function $\langle\rangle:, U \times U \rightarrow \mathbb{R}$ that assigns to each pairs of vectors u, v of U a real number $\langle u, v\rangle$ satisfying

1. For all $u, v \in U,\langle u, v\rangle=\langle v, u\rangle$.
2. For all $u, v \in U$ and $r \in \mathbb{R},\langle r u, v\rangle=r\langle u, v\rangle$.
3. For all $u, v, w \in U,\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$.
4. For all $u \in U$,
(i) $\langle u, u\rangle \geq 0$,
(ii) If $\langle u, u\rangle=0$, then $u=0$.

Example 4.2. Let $U=\mathbb{R}^{2}$ and $u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. Define $\langle\rangle:, \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\langle u, v\rangle=x_{1} y_{1}+x_{2} y_{2}$. Show that \langle,$\rangle is an inner product$ on \mathbb{R}^{2}. (It is called standard inner product on \mathbb{R}^{2})

Example 4.3. Let $U=\mathbb{R}^{2}$ and $u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. Define $\langle\rangle:, \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\langle u, v\rangle=x_{1} y_{1}-x_{2} y_{1}-x_{1} y_{2}+3 x_{2} y_{2}$. Show that \langle,$\rangle is$ an inner product on \mathbb{R}^{2}.

Example 4.4. Let $U=\mathbb{R}^{n}$ and $u=\left(x_{1}, \cdots, x_{n}\right), v=\left(y_{1}, \cdots, y_{n}\right) \in \mathbb{R}^{n}$. Define $\langle\rangle:, \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\langle u, v\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Show that \langle,$\rangle is an$ inner product on \mathbb{R}^{n}. (It is called standard inner product on \mathbb{R}^{n})

Example 4.5. Let $U=P_{n}(\mathbb{R})$ and $u(x), v(x) \in P_{n}(\mathbb{R})$. Define $\langle\rangle:, P_{n}(\mathbb{R}) \times$ $P_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ by $\langle u(x), v(x)\rangle=\int_{0}^{1} u(x) v(x) d x$. Show that \langle,$\rangle is an inner$ product on $P_{n}(\mathbb{R})$. (It is called standard inner product on $P_{n}(\mathbb{R})$)

Example 4.6. Let $U=M_{m n}(\mathbb{R})$ and $u=\left(a_{i j}\right), v=\left(b_{i j}\right) \in M_{m n}(\mathbb{R})$. Define $\langle\rangle:, M_{m n}(\mathbb{R}) \times M_{m n}(\mathbb{R}) \rightarrow \mathbb{R}$ by $\langle u, v\rangle=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j} b_{i j}$. Show that \langle, is an inner product on $M_{m n}(\mathbb{R})$. (It is called standard inner product on $M_{m n}(\mathbb{R})$)

Example 4.7. Let U be an n-dimensional vector space over \mathbb{R} and $S=$ $\left\{u_{1}, \cdots, u_{n}\right\}$ be a basis for U. Let $u, v \in U$. Then there exist $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n} \in$ \mathbb{R} such that $u=x_{1} u_{1}+\cdots+x_{n} u_{n}$ and $v=y_{1} u_{1}+\cdots+y_{n} u_{n}$. Define $\langle\rangle:, U \times U \rightarrow \mathbb{R}$ by $\langle u, v\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Show that \langle,$\rangle is an inner$ product on U.

Theorem 4.8. Let U be any real vector space and \langle,$\rangle be an inner product$ on U. Then for all $u, v, w \in U, r \in \mathbb{R}$, the following is hold

1. $\langle u, r v\rangle=r\langle u, v\rangle$.
2. $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$.
3. $\langle u, 0\rangle=\langle 0, u\rangle=0$.
4. If $u \neq 0$, then $\langle u, u\rangle>0$.

Definition 4.9. A real vector space U which has defined on it an inner product \langle,$\rangle is called Euclidean vector space or inner product space.$ We denote it by $\langle U,\langle\rangle$,$\rangle .$

Example 4.10. Let $U=\mathbb{R}^{2}$ and $u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. Define $\langle,\rangle_{1}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\langle u, v\rangle_{1}=x_{1} y_{1}+x_{2} y_{2}$, by Example 4.2, \langle,\rangle_{1} is an inner product on \mathbb{R}^{2}.
Define $\langle,\rangle_{2}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\langle u, v\rangle_{2}=x_{1} y_{1}-x_{2} y_{1}-x_{1} y_{2}+3 x_{2} y_{2}$, by Example 4.3, \langle,\rangle_{2} is an inner product on \mathbb{R}^{2}.

Therefore $\left\langle\mathbb{R}^{2},\langle,\rangle_{1}\right\rangle$ and $\left\langle\mathbb{R}^{2},\langle,\rangle_{2}\right\rangle$ are different Euclidean vector spaces.

Theorem 4.11 (Cauchy-Schwarz inequality). If u and v are any two vectors in an Euclidean vector space U, then $\langle u, v\rangle^{2} \leq\langle u, u\rangle\langle v, v\rangle$.

Definition 4.12. Let $\langle U,\langle\rangle$,$\rangle be an Euclidean vector space. The length or$ norm of a vector $u \in U$ defined as $\|u\|=\sqrt{\langle u, u\rangle}$.

Example 4.13. Let $\left\langle M_{22}(\mathbb{R}),\langle\rangle,\right\rangle$ be an Euclidean vector space. Find $\left\|\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]\right\|$.

Note 4.14. The Cauchy-Schwarz inequality can be reformulated as follows: If u and v are any two vectors in an Euclidean vector space U, then $|\langle u, v\rangle| \leq$ $\|u\| \cdot\|v\|$.

Theorem 4.15. Let $\langle U,\langle\rangle$,$\rangle be an Euclidean vector space. Then$

1. For all $u \in U,\|u\| \geq 0$.
2. For all $u \in U,\|u\|=0$ if and only if $u=0$.
3. For all $u \in U$ and $r \in \mathbb{R},\|r u\|=|r| \cdot\|u\|$.
4. For all $u, v \in U,\|u+v\| \leq\|u\|+\|v\|$. (Triangle inequality)

Definition 4.16. Let $\langle U,\langle\rangle$,$\rangle be an Euclidean vector space. The distance$ between vectors $u, v \in U$ defined as $d(u, v)=\|u-v\|$.

Example 4.17. Let $\left\langle M_{22}(\mathbb{R}),\langle\rangle,\right\rangle$ be an Euclidean vector space. Let

$$
u=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \text { and } v=\left[\begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right]
$$

Find $d(u, v)$.

Theorem 4.18. Let $\langle U,\langle\rangle$,$\rangle be an Euclidean vector space. Then$

1. For all $u, v \in U, d(u, v) \geq 0$.
2. For all $u, v \in U, d(u, v)=0$ if and only if $u=v$.
3. For all $u, v \in U, d(u, v)=d(v, u)$.
4. For all $u, v, w \in U, d(u, v) \leq d(u, w)+d(w, v)$.

Definition 4.19. Let u and v are any two non-zero vectors in an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . The angle \theta$ between u and v is defined by $\cos \theta=$ $\frac{\langle u, v\rangle}{\|u\|\|v\|}$, where $0 \leq \theta \leq \pi$.

Example 4.20. In $\left\langle P_{1}(\mathbb{R}),\langle\rangle,\right\rangle$, find the angle between $u(x)=x$ and $v(x)=$ $3 x-2$.

Definition 4.21. Let u and v are any two vectors in an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . Then u$ and v are perpendicular or orthogonal if $\langle u, v\rangle=$ 0 .

Theorem 4.22 (Pythagorean Theorem). Let u and v are any two nonzero vectors in an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . If u$ and v are perpendicular, then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.

Definition 4.23. Let S be a subset of an Euclidean vector space $\langle U,\langle\rangle\rangle .$, is said to be orthogonal if any two distinct vectors in S are orthogonal.

Definition 4.24. Let S be a subset of an Euclidean vector space $\langle U,\langle\rangle$,$\rangle .$ S is said to be orthonormal if S is orthogonal and each element of S has length 1.

Example 4.25. Let $S=\{(1,0,3),(-3,0,1),(0,1,0)\}$. Then S is an orthogonal basis of \mathbb{R}^{3} with usual inner product but it is not orthonormal.

Example 4.26. Let $S=\left\{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right\}$. Then S is an orthonormal basis of \mathbb{R}^{2} with usual inner product.

Theorem 4.27. Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be an orthogonal set of non-zero vectors in an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . Then S$ is linearly independent.

Theorem 4.28. Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be an orthogonal basis of an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . Then for any u$ in $U, u=\frac{\left\langle u, u_{1}\right\rangle}{\left\|u_{1}\right\|^{2}} u_{1}+\cdots+\frac{\left\langle u, u_{n}\right\rangle}{\left\|u_{n}\right\|^{2}} u_{n}$.

Corollary 4.29. Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be an orthonormal basis of an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . Then for any u$ in $U, u=\left\langle u, u_{1}\right\rangle u_{1}+\cdots+$ $\left\langle u, u_{n}\right\rangle u_{n}$.

Example 4.30. Let $u_{1}=(1,1,1), u_{2}=(0,1,-1), u_{3}=(-2,1,1)$. Show that $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is a basis for \mathbb{R}^{3} and $u=(3,-1,2)$ is a LC of the vectors in S.

Remark 4.31. Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be an orthogonal set of non-zero vectors in an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . Then H=\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \cdots, \frac{u_{n}}{\left\|u_{n}\right\|}\right\}$ is orthonormal and $[S]=[H]$.

Remark 4.32 (Gram-Schmidt orthogonalization process). For every subspace of a finite dimensional Euclidean space $\langle U,\langle\rangle$,$\rangle , there exist an or-$ thogonal basis.
Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be any basis to a subspace M. To transform S to an orthogonal basis $T=\left\{v_{1}, \cdots, v_{n}\right\}$ we process as follows
Let $v_{1}=u_{1}$,
$v_{2}=u_{2}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}$,
\vdots
$\dot{v}_{n}=u_{n}-\frac{\left\langle u_{n}, v_{n-1}\right\rangle}{\left\|v_{n-1}\right\|^{2}} v_{n-1}-\frac{\left\langle u_{n}, v_{n-2}\right\rangle}{\left\|v_{n-2}\right\|^{2}} v_{n-2}-\cdots-\frac{\left\langle u_{n}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}$.

Example 4.33. Find orthogonal basis for $P_{1}(\mathbb{R})$ with usual inner product.

Example 4.34. Let M be a subspace of \mathbb{R}^{4} that has a basis $S=\{(1,-2,0,1)$, $(-1,0,0,-1),(0,0,0,1)\}$. Find orthonormal basis for M with usual inner product.

Definition 4.35. Let M be a subspace of a vector space U over $F . N$ is said to be complement space to M if N is a subspace and $U=M \oplus N$.

Theorem 4.36. Every subspace M of a finite dimensional vector space U has a complement space.

Example 4.37. Let $M=\{(x, y): x=3 y\}$ be a subspace of \mathbb{R}^{2}. Let $N_{1}=$ $[\{(1,0)\}], N_{2}=[\{(0,1)\}]$. Then it is clear that $\mathbb{R}^{2}=M \oplus N_{1}$ and $\mathbb{R}^{2}=$ $M \oplus N_{2}$.

Definition 4.38. Let M be a subspace of an Euclidean vector space $\langle U,\langle\rangle$,$\rangle .$ Let M^{\perp} be the set of all vectors in U which are orthogonal to every vector in $M . M^{\perp}=\{u \in U:\langle u, v\rangle=0 \forall v \in M\}$.

Theorem 4.39. Let M be a subspace of an Euclidean vector space $\langle U,\langle\rangle$,$\rangle .$ Then

1. M^{\perp} is a subspace.
2. $M \cap M^{\perp}=\{0\}$.
3. $U=M \oplus M^{\perp}$.
4. $\left(M^{\perp}\right)^{\perp}=M$.

Definition 4.40. Let M be a subspace of an Euclidean vector space $\langle U,\langle\rangle$,$\rangle .$ The space M^{\perp} is called an orthogonal complement of M.

To find M^{\perp}, we process as follows

1. Find a basis $\left\{u_{1}, \cdots, u_{n}\right\}$ for M.
2. Extend $\left\{u_{1}, \cdots, u_{n}\right\}$ to $\left\{u_{1}, \cdots, u_{n}, v_{1}, \cdots, v_{m}\right\}$ be a basis for U.
3. By using GSOP, find $\left\{w_{1}, \cdots, w_{n}, z_{1}, \cdots, z_{m}\right\}$ which is orthogonal basis for U.
Therefore, $M^{\perp}=\left[\left\{z_{1}, \cdots, z_{m}\right\}\right]$.

Example 4.41. Find an orthogonal complement to the subspace $M=\{(x, y)$: $x-2 y=0\}$ of \mathbb{R}^{2} with usual inner product.

Definition 4.42. Let M be a subspace of an Euclidean vector space $\langle U,\langle\rangle$, and $u \in U$. Then $u=v+w$ for a unique $v \in M$ and $w \in M^{\perp} . v$ is called the projection of u on a subspace M.

Example 4.43. Find the projection of $u=(3,4)$ on the subspace $M=$ $\{(x, y): x-2 y=0\}$ of \mathbb{R}^{2} with usual inner product.

To find a projection of a vector u on a subspace M, we process as follows 1. Find an orthogonal basis $\left\{u_{1}, \cdots, u_{n}\right\}$ for M.
2. Put $v=\frac{\left\langle u, u_{1}\right\rangle}{\left\|u_{1}\right\|^{2}} u_{1}+\cdots+\frac{\left\langle u, u_{n}\right\rangle}{\left\|u_{n}\right\|^{2}} u_{n}$. Therefore, v is a projection of u on M.

Definition 4.44. Let $\langle U,\langle\rangle$,$\rangle be an Euclidean vector space and T: U \rightarrow U$ be a linear transformation. T is said to be orthogonal transformation if $\forall u, v \in U,\langle T(u), T(v)\rangle=\langle u, v\rangle$.

Example 4.45. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=\frac{1}{\sqrt{2}}(x-y, x+y)$, where \mathbb{R}^{2} is an Euclidean vector space with usual inner product. Show that T is an orthogonal transformation.

Example 4.46. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x, x+y)$, where \mathbb{R}^{2} is an Euclidean vector space with usual inner product. Show that T is not orthogonal transformation.

Theorem 4.47. Let $\langle U,\langle\rangle$,$\rangle be an Euclidean vector space and T: U \rightarrow U$ be a LT. The following are equivalent

1. T is an orthogonal transformation.
2. T preserves the length, $\forall u \in U\|T(u)\|=\|u\|$.
3. For all unit vector $u, T(u)$ is a unit vector.

Theorem 4.48. Let $\langle U,\langle\rangle$,$\rangle be a finite dimensional Euclidean vector space$ and $T: U \rightarrow U$ be an orthogonal transformation. Then T is an isomorphism.

Theorem 4.49. The composition of two orthogonal transformations is an orthogonal transformation.

Theorem 4.50. Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be an orthonormal basis for an Euclidean vector space $\langle U,\langle\rangle$,$\rangle and T: U \rightarrow U$ be an orthogonal transformation. Let M be a matrix for T with respect to S. Then the following are hold

1. Every row of M is of length 1 , which is regarded as a vector in \mathbb{R}^{n} with standard inner product.
2. Rows of M are orthogonal.
3. $M^{-1}=M^{t}$.
4. (1) and (2) are hold for columns.

Definition 4.51. Let $M \in M_{n n}(\mathbb{R})$. M is said to be orthogonal matrix if $M M^{t}=I$.

Theorem 4.52. Let $M \in M_{n n}(\mathbb{R})$ and M is an orthogonal matrix. Let $S=\left\{u_{1}, \cdots, u_{n}\right\}$ be an orthonormal basis for an Euclidean vector space $\langle U,\langle\rangle$,$\rangle . Then there exist an orthogonal transformation T: U \rightarrow U$ such that the matrix for T with respect to S is M.

