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1 Vector Spaces
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4 Euclidean Vector Spaces

Definition 4.1 (Inner Product). Let U be any real vector space. An inner
product on U is a function ⟨, ⟩ : U × U → R that assigns to each pairs of
vectors u, v of U a real number ⟨u, v⟩ satisfying

1. For all u, v ∈ U, ⟨u, v⟩ = ⟨v, u⟩.

2. For all u, v ∈ U and r ∈ R, ⟨ru, v⟩ = r⟨u, v⟩.

3. For all u, v, w ∈ U, ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.

4. For all u ∈ U ,

(i) ⟨u, u⟩ ≥ 0,

(ii) If ⟨u, u⟩ = 0, then u = 0.

Example 4.2. Let U = R2 and u = (x1, x2), v = (y1, y2) ∈ R2. Define
⟨, ⟩ : R2×R2 → R by ⟨u, v⟩ = x1y1+x2y2. Show that ⟨, ⟩ is an inner product
on R2. (It is called standard inner product on R2)
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Example 4.3. Let U = R2 and u = (x1, x2), v = (y1, y2) ∈ R2. Define
⟨, ⟩ : R2 ×R2 → R by ⟨u, v⟩ = x1y1 − x2y1 − x1y2 + 3x2y2. Show that ⟨, ⟩ is
an inner product on R2.

Example 4.4. Let U = Rn and u = (x1, · · · , xn), v = (y1, · · · , yn) ∈ Rn.
Define ⟨, ⟩ : Rn ×Rn → R by ⟨u, v⟩ = x1y1 + · · ·+ xnyn. Show that ⟨, ⟩ is an
inner product on Rn. (It is called standard inner product on Rn)

Example 4.5. Let U = Pn(R) and u(x), v(x) ∈ Pn(R). Define ⟨, ⟩ : Pn(R)×
Pn(R) → R by ⟨u(x), v(x)⟩ =

∫ 1

0
u(x)v(x)dx. Show that ⟨, ⟩ is an inner

product on Pn(R). (It is called standard inner product on Pn(R))

Example 4.6. Let U = Mmn(R) and u = (aij), v = (bij) ∈ Mmn(R). Define
⟨, ⟩ : Mmn(R) × Mmn(R) → R by ⟨u, v⟩ =

∑n
j=1

∑m
i=1 aijbij. Show that ⟨, ⟩

is an inner product on Mmn(R). (It is called standard inner product on
Mmn(R))
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Example 4.7. Let U be an n-dimensional vector space over R and S =
{u1, · · · , un} be a basis for U . Let u, v ∈ U . Then there exist x1, · · · , xn, y1, · · · , yn ∈
R such that u = x1u1 + · · · + xnun and v = y1u1 + · · · + ynun. Define
⟨, ⟩ : U × U → R by ⟨u, v⟩ = x1y1 + · · · + xnyn. Show that ⟨, ⟩ is an inner
product on U .

Theorem 4.8. Let U be any real vector space and ⟨, ⟩ be an inner product
on U . Then for all u, v, w ∈ U , r ∈ R, the following is hold

1. ⟨u, rv⟩ = r⟨u, v⟩.

2. ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩.

3. ⟨u, 0⟩ = ⟨0, u⟩ = 0.

4. If u ̸= 0, then ⟨u, u⟩ > 0.

Definition 4.9. A real vector space U which has defined on it an inner
product ⟨, ⟩ is called Euclidean vector space or inner product space.
We denote it by ⟨U, ⟨, ⟩⟩.

Example 4.10. Let U = R2 and u = (x1, x2), v = (y1, y2) ∈ R2. Define
⟨, ⟩1 : R2×R2 → R by ⟨u, v⟩1 = x1y1+x2y2, by Example 4.2, ⟨, ⟩1 is an inner
product on R2.
Define ⟨, ⟩2 : R2×R2 → R by ⟨u, v⟩2 = x1y1−x2y1−x1y2+3x2y2, by Example
4.3, ⟨, ⟩2 is an inner product on R2.
Therefore ⟨R2, ⟨, ⟩1⟩ and ⟨R2, ⟨, ⟩2⟩ are different Euclidean vector spaces.

Theorem 4.11 (Cauchy-Schwarz inequality). If u and v are any two
vectors in an Euclidean vector space U , then ⟨u, v⟩2 ≤ ⟨u, u⟩⟨v, v⟩.
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Definition 4.12. Let ⟨U, ⟨, ⟩⟩ be an Euclidean vector space. The length or
norm of a vector u ∈ U defined as ||u|| =

√
⟨u, u⟩.

Example 4.13. Let ⟨M22(R), ⟨, ⟩⟩ be an Euclidean vector space. Find ||
[
1 2
−1 3

]
||.

Note 4.14. The Cauchy-Schwarz inequality can be reformulated as follows:
If u and v are any two vectors in an Euclidean vector space U , then |⟨u, v⟩| ≤
||u|| · ||v||.

Theorem 4.15. Let ⟨U, ⟨, ⟩⟩ be an Euclidean vector space. Then

1. For all u ∈ U , ||u|| ≥ 0.

2. For all u ∈ U , ||u|| = 0 if and only if u = 0.

3. For all u ∈ U and r ∈ R, ||ru|| = |r| · ||u||.

4. For all u, v ∈ U , ||u+ v|| ≤ ||u||+ ||v||. (Triangle inequality)
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Definition 4.16. Let ⟨U, ⟨, ⟩⟩ be an Euclidean vector space. The distance
between vectors u, v ∈ U defined as d(u, v) = ||u− v||.

Example 4.17. Let ⟨M22(R), ⟨, ⟩⟩ be an Euclidean vector space. Let

u =

[
1 2
2 1

]
and v =

[
2 1
−1 3

]
.

Find d(u, v).

Theorem 4.18. Let ⟨U, ⟨, ⟩⟩ be an Euclidean vector space. Then

1. For all u, v ∈ U, d(u, v) ≥ 0.

2. For all u, v ∈ U, d(u, v) = 0 if and only if u = v.

3. For all u, v ∈ U, d(u, v) = d(v, u).

4. For all u, v, w ∈ U, d(u, v) ≤ d(u,w) + d(w, v).

Definition 4.19. Let u and v are any two non-zero vectors in an Euclidean
vector space ⟨U, ⟨, ⟩⟩. The angle θ between u and v is defined by cosθ =
⟨u,v⟩

||u||||v|| , where 0 ≤ θ ≤ π.
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Example 4.20. In ⟨P1(R), ⟨, ⟩⟩, find the angle between u(x) = x and v(x) =
3x− 2.

Definition 4.21. Let u and v are any two vectors in an Euclidean vector
space ⟨U, ⟨, ⟩⟩. Then u and v are perpendicular or orthogonal if ⟨u, v⟩ =
0.

Theorem 4.22 (Pythagorean Theorem). Let u and v are any two non-
zero vectors in an Euclidean vector space ⟨U, ⟨, ⟩⟩. If u and v are perpendic-
ular, then ||u+ v||2 = ||u||2 + ||v||2.

Definition 4.23. Let S be a subset of an Euclidean vector space ⟨U, ⟨, ⟩⟩. S
is said to be orthogonal if any two distinct vectors in S are orthogonal.

Definition 4.24. Let S be a subset of an Euclidean vector space ⟨U, ⟨, ⟩⟩.
S is said to be orthonormal if S is orthogonal and each element of S has
length 1.
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Example 4.25. Let S = {(1, 0, 3), (−3, 0, 1), (0, 1, 0)}. Then S is an orthog-
onal basis of R3 with usual inner product but it is not orthonormal.

Example 4.26. Let S = {( 1√
2
,− 1√

2
), ( 1√

2
, 1√

2
)}. Then S is an orthonormal

basis of R2 with usual inner product.

Theorem 4.27. Let S = {u1, · · · , un} be an orthogonal set of non-zero vec-
tors in an Euclidean vector space ⟨U, ⟨, ⟩⟩. Then S is linearly independent.

Theorem 4.28. Let S = {u1, · · · , un} be an orthogonal basis of an Euclidean

vector space ⟨U, ⟨, ⟩⟩. Then for any u in U , u = ⟨u,u1⟩
||u1||2u1 + · · ·+ ⟨u,un⟩

||un||2un.
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Corollary 4.29. Let S = {u1, · · · , un} be an orthonormal basis of an Eu-
clidean vector space ⟨U, ⟨, ⟩⟩. Then for any u in U , u = ⟨u, u1⟩u1 + · · · +
⟨u, un⟩un.

Example 4.30. Let u1 = (1, 1, 1), u2 = (0, 1,−1), u3 = (−2, 1, 1). Show that
S = {u1, u2, u3} is a basis for R3 and u = (3,−1, 2) is a LC of the vectors in
S.

Remark 4.31. Let S = {u1, · · · , un} be an orthogonal set of non-zero vec-
tors in an Euclidean vector space ⟨U, ⟨, ⟩⟩. Then H = { u1

||u1|| , · · · ,
un

||un||} is

orthonormal and [S] = [H].

Remark 4.32 (Gram-Schmidt orthogonalization process). For every
subspace of a finite dimensional Euclidean space ⟨U, ⟨, ⟩⟩, there exist an or-
thogonal basis.
Let S = {u1, · · · , un} be any basis to a subspace M . To transform S to an
orthogonal basis T = {v1, · · · , vn} we process as follows
Let v1 = u1,
v2 = u2 − ⟨u2,v1⟩

||v1||2 v1,
...
vn = un − ⟨un,vn−1⟩

||vn−1||2 vn−1 − ⟨un,vn−2⟩
||vn−2||2 vn−2 − · · · − ⟨un,v1⟩

||v1||2 v1.

Example 4.33. Find orthogonal basis for P1(R) with usual inner product.
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Example 4.34. Let M be a subspace of R4 that has a basis S = {(1,−2, 0, 1),
(−1, 0, 0,−1), (0, 0, 0, 1)}. Find orthonormal basis for M with usual inner
product.

Definition 4.35. Let M be a subspace of a vector space U over F. N is said
to be complement space to M if N is a subspace and U = M ⊕N .

Theorem 4.36. Every subspace M of a finite dimensional vector space U
has a complement space.

Example 4.37. Let M = {(x, y) : x = 3y} be a subspace of R2. Let N1 =
[{(1, 0)}], N2 = [{(0, 1)}]. Then it is clear that R2 = M ⊕ N1 and R2 =
M ⊕N2.
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Definition 4.38. Let M be a subspace of an Euclidean vector space ⟨U, ⟨, ⟩⟩.
Let M⊥ be the set of all vectors in U which are orthogonal to every vector in
M . M⊥ = {u ∈ U : ⟨u, v⟩ = 0 ∀v ∈ M}.

Theorem 4.39. Let M be a subspace of an Euclidean vector space ⟨U, ⟨, ⟩⟩.
Then

1. M⊥ is a subspace.

2. M ∩M⊥ = {0}.

3. U = M ⊕M⊥.

4. (M⊥)⊥ = M .

Definition 4.40. Let M be a subspace of an Euclidean vector space ⟨U, ⟨, ⟩⟩.
The space M⊥ is called an orthogonal complement of M .

To find M⊥, we process as follows

1. Find a basis {u1, · · · , un} for M .

2. Extend {u1, · · · , un} to {u1, · · · , un, v1, · · · , vm} be a basis for U .

3. By using GSOP, find {w1, · · · , wn, z1, · · · , zm} which is orthogonal basis
for U .
Therefore, M⊥ = [{z1, · · · , zm}].

Example 4.41. Find an orthogonal complement to the subspace M = {(x, y) :
x− 2y = 0} of R2 with usual inner product.
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Definition 4.42. Let M be a subspace of an Euclidean vector space ⟨U, ⟨, ⟩⟩
and u ∈ U . Then u = v + w for a unique v ∈ M and w ∈ M⊥. v is called
the projection of u on a subspace M .

Example 4.43. Find the projection of u = (3, 4) on the subspace M =
{(x, y) : x− 2y = 0} of R2 with usual inner product.

To find a projection of a vector u on a subspace M , we process as follows

1. Find an orthogonal basis {u1, · · · , un} for M .

2. Put v = ⟨u,u1⟩
||u1||2u1 + · · · + ⟨u,un⟩

||un||2un. Therefore, v is a projection of u on
M .

Definition 4.44. Let ⟨U, ⟨, ⟩⟩ be an Euclidean vector space and T : U → U
be a linear transformation. T is said to be orthogonal transformation if
∀u, v ∈ U, ⟨T (u), T (v)⟩ = ⟨u, v⟩.

Example 4.45. Let T : R2 → R2 defined by T (x, y) = 1√
2
(x − y, x + y),

where R2 is an Euclidean vector space with usual inner product. Show that
T is an orthogonal transformation.
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Example 4.46. Let T : R2 → R2 defined by T (x, y) = (x, x+ y), where R2

is an Euclidean vector space with usual inner product. Show that T is not
orthogonal transformation.

Theorem 4.47. Let ⟨U, ⟨, ⟩⟩ be an Euclidean vector space and T : U → U
be a LT. The following are equivalent

1. T is an orthogonal transformation.

2. T preserves the length, ∀u ∈ U ||T (u)|| = ||u||.

3. For all unit vector u , T (u) is a unit vector.

Theorem 4.48. Let ⟨U, ⟨, ⟩⟩ be a finite dimensional Euclidean vector space
and T : U → U be an orthogonal transformation. Then T is an isomorphism.
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Theorem 4.49. The composition of two orthogonal transformations is an
orthogonal transformation.

Theorem 4.50. Let S = {u1, · · · , un} be an orthonormal basis for an Eu-
clidean vector space ⟨U, ⟨, ⟩⟩ and T : U → U be an orthogonal transformation.
Let M be a matrix for T with respect to S. Then the following are hold

1. Every row of M is of length 1, which is regarded as a vector in Rn with
standard inner product.

2. Rows of M are orthogonal.

3. M−1 = M t.

4. (1) and (2) are hold for columns.

Definition 4.51. Let M ∈ Mnn(R). M is said to be orthogonal matrix
if MM t = I.

Theorem 4.52. Let M ∈ Mnn(R) and M is an orthogonal matrix. Let
S = {u1, · · · , un} be an orthonormal basis for an Euclidean vector space
⟨U, ⟨, ⟩⟩. Then there exist an orthogonal transformation T : U → U such that
the matrix for T with respect to S is M .
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