## Practice sheet \#2

Q1. Find eigenvalues and eigenvectors for each of the following.
a. $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(3 x+3 y, x+5 y)$.
b. $\quad T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+y+z, 2 y+z, 2 y+3 z)$.
c. $\quad T: P_{1}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ defined by $T(a+b x)=-b+a x$.
d. $\quad T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(5 a_{0}+6 a_{1}+2 a_{2}\right)-\left(a_{1}+8 a_{2}\right) x+$ $\left(a_{0}-2 a_{2}\right) x^{2}$.
e. $\quad T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}2 c & a+c \\ b-2 c & d\end{array}\right]$.
f. $\quad T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $T\left(z_{1}, z_{2}\right)=\left(z_{1}-z_{2}, 2 z_{1}\right)$, where $\mathbb{C}^{2}$ is a space over $\mathbb{C}$.

Q2. Show that the characteristic polynomial for any linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is $\Delta(t)=t^{2}-\operatorname{tr}(M) t+\operatorname{det}(M)$, where $\operatorname{tr}(M)$ is the trace of a matrix $M$, which is the sum of diagonal elements of $M$, and $M$ is a matrix of $T$ relative to any basis for $\mathbb{R}^{2}$.

Q3. Show that the linear transformation $T: U \rightarrow U$ is not isomorphism if and only if $\lambda=0$ is an eigenvalue of $T$.

Q4. If $T: U \rightarrow U$ is an isomorphism and $u \in U$ is an eigenvector of $T$ with respect to an eigenvalue $\lambda$, then show that $u$ is an eigenvector of $T^{-1}$ with respect to an eigenvalue $1 / \lambda$.

Q5. If $u \in U$ is an eigenvector of a linear transformation $T: U \rightarrow U$ with respect to an eigenvalue $\lambda$, then show that $u$ is an eigenvector of $T^{n}$ with respect to an eigenvalue $\lambda^{n}$ for any positive integer $n$.

Q6. If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(0, x, y)$, then find characteristic polynomial for each of $T, T^{2}$ and $T^{3}$.

Q7. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $u=(1,2)$ is an eigenvector with respect to an eigenvalue $\lambda=5$.

Q8. Find a linear transformation $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ such that $u=1+x$ is an eigenvector with respect to an eigenvalue $\lambda=2$ and $v=-2 x^{2}$ is an eigenvector with respect to an eigenvalue $\lambda=4$.

