Practice sheet #2

Q1. Find eigenvalues and eigenvectors for each of the following.

- a. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (3x + 3y, x + 5y).
- b. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y + z, 2y + z, 2y + 3z).
- c. $T: P_1(\mathbb{R}) \to P_1(\mathbb{R})$ defined by T(a + bx) = -b + ax.
- d. $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined by $T(a_0 + a_1x + a_2x^2) = (5a_0 + 6a_1 + 2a_2) (a_1 + 8a_2)x + (a_0 2a_2)x^2$.
- e. $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2c & a+c \\ b-2c & d \end{bmatrix}$.
- f. $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T(z_1, z_2) = (z_1 z_2, 2z_1)$, where \mathbb{C}^2 is a space over \mathbb{C} .
- Q2. Show that the characteristic polynomial for any linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is
 - $\Delta(t) = t^2 tr(M)t + \det(M), \text{ where } tr(M) \text{ is the trace of a matrix } M, \text{ which is the sum of }$ diagonal elements of M, and M is a matrix of T relative to any basis for \mathbb{R}^2 .
- Q3. Show that the linear transformation $T: U \to U$ is not isomorphism if and only if $\lambda = 0$ is an eigenvalue of *T*.
- Q4. If $T: U \to U$ is an isomorphism and $u \in U$ is an eigenvector of T with respect to an eigenvalue λ , then show that u is an eigenvector of T^{-1} with respect to an eigenvalue $1/\lambda$.
- Q5. If $u \in U$ is an eigenvector of a linear transformation $T: U \to U$ with respect to an eigenvalue λ , then show that u is an eigenvector of T^n with respect to an eigenvalue λ^n for any positive integer n.
- Q6. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (0, x, y), then find characteristic polynomial for each of T, T^2 and T^3 .
- Q7. Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that u = (1, 2) is an eigenvector with respect to an eigenvalue $\lambda = 5$.
- Q8. Find a linear transformation $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ such that u = 1 + x is an eigenvector with respect to an eigenvalue $\lambda = 2$ and $v = -2x^2$ is an eigenvector with respect to an eigenvalue $\lambda = 4$.