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1 Some Preliminary Considerations

Well-Ordering Priciple. Every nonempty set S of nonnegative integers
contains a least element; that is, there is some integer a in S such that a ≤ b
for all b belonging to S.

Theorem 1.1. (Archimedean Property)
If a and b are any positive integers, then there exists a positive integer n such
that na ≥ b.

Theorem 1.2. (Principle of Finite Induction)
Let S be a set of positive integers with the following properties:

(i) 1 belongs to S, and

(ii) Whenever the integer k is in S, the next integer k + 1 must also be in
S.

Then S is the set of all positive integers.

Definition 1.3. For any positive integer n and any integer k satisfying
0 ≤ k ≤ n, the binomial coefficients are defined by(

n

k

)
=

n!

k!(n− k)!
.

Theorem 1.4. (Pascal’s Rule)
For 1 ≤ k ≤ n, (

n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

2



2 Divisibility Theory in the Integers

”Integral numbers are the fountainhead of all mathematics”.
H. MINKOWSKI

2.1 THE DIVISION ALGORITHM

Theorem 2.1. (Division Algorithm). Given integers a and b, with b > 0,
there exist unique integers q and r satisfying

a = qb+ r, 0 ≤ r<b.

The integers q and r are called, respectively, the quotient and remainder
in the division of a by b.

Corollary 2.2. If a and b are integers, with b ̸= 0, then there exist unique
integers q and r such that

a = qb+ r, 0 ≤ r<|b|.

Definition 2.3. An integer n is even if n = 2k for some k, and is odd if
n = 2k + 1 for some k.

Example 2.4. The square of an integer leaves the remainder 0 or 1 upon
division by 4.

2.2 THE GREATEST COMMON DIVISOR

Definition 2.5. An integer b is said to be divisible by an integer a ̸= 0, in
symbols a | b, if there exits some integer c such that

b = ac.

We write a ∤ b to indicate that b is not divisible by a.
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Example 2.6. .

(1) 3 | 12,

(2) 3 ∤ 10.

Theorem 2.7. For integers a, b, c, d, the following hold:

1. a | 0, 1 | a, a | a.

2. a | 1 if and only if a = ±1.

3. If a | b and c | d, then ac | bd.

4. If a | b and b | c, then a | c.

5. a | b and b | a if and only if a = ±b.

6. If a | b and b ̸= 0, then |a| ≤ |b|.

7. If a | b and a | c, then a | (bx+ cy) for arbitrary integers x and y.
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Definition 2.8. If a and b are arbitrary integers, then an integer d is said
to be a common divisor of a and b if both d | a and d | b.

Definition 2.9. Let a and b be given integers, with at least one of them
different form zero. The greatest common divisor of a and b, dented by
gcd(a, b), is the positive integer d satisfying

1. d | a and d | b,

2. if c | a and c | b, then c ≤ d.

Example 2.10. The positive divisors of −12 are 1, 2, 3, 4, 6, 12, while those
of 30 are 1, 2, 3, 5, 6, 10, 15, 30, hence, the positive common divisors of −12
and 30 are 1, 2, 3, 6.
Since 6 is the largest of these integers, it follows that gcd(−12, 30) = 6.

Example 2.11. gcd(−5, 5) = 5, gcd(8, 15) = 1, gcd(−8,−36) = 4.

Theorem 2.12. Given integers a and b, not both of which are zero, there
exist integers x and y such that

gcd(a, b) = ax+ by.

Corollary 2.13. If a and b are given integers, not both zero, then the set
T = {ax + by | x, y are integers} is precisely the set of all multiples of
d = gcd(a, b).
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Example 2.14.

gcd(−12, 30) = 6 = (−12) · 2 + (30) · 1,

gcd(−8,−36) = 4 = (−8) · 4 + (−36) · (−1).

Definition 2.15. Two integers a and b, not both of which are zero, are said
to be relatively prime whenever gcd(a, b) = 1.

Example 2.16. Since gcd(8, 15) = 1, then 8 and 15 are relatively prime.

Theorem 2.17. Let a and b be integers, not both zero. Then a and b are
relatively prime if and only if there exist integers x and y such that 1 =
ax+ by.

Corollary 2.18. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.
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Example 2.19. gcd(−12, 30) = 6 and gcd(−12/6, 30/6) = gcd(−2, 5) = 1.

Remark 2.20. It is not true, without adding an extra condition, that a | c
and b | c together give ab | c. For instance, 10 | 30 and 15 | 30, but 10·15 ∤ 30.

Corollary 2.21. If a | c and b | c, with gcd(a, b) = 1, then ab | c.

Theorem 2.22. (Euclid’s Lemma) If a | bc, with gcd(a, b) = 1, then a | c.

Remark 2.23. If a and b are not relatively prime, then the conclusion of
Euclid’s Lemma may fail to hold. For example, 10 | 5 ·6 but 10 ∤ 5 and 10 ∤ 6.
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Theorem 2.24. Let a, b be integers, not both zero. For a positive integer d,
d = gcd(a, b) if and only if

1. d | a and d | b,

2. whenever c | a and c | b, then c | d.

2.3 THE EUCLIDEAN ALGORITHM

Lemma 2.25. If a = qb+ r, then gcd(a, b) = gcd(b, r).

The Euclidean Algorithm.
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Example 2.26. Find gcd(195, 70).

Example 2.27. Find gcd(295, 140) and gcd(12378, 3054).

Theorem 2.28. If k>0, then gcd(ka, kb) = k gcd(a, b).

Corollary 2.29. For any integer k ̸= 0, gcd(ka, kb) = |k|gcd(a, b).

Example 2.30. gcd(12, 30) = 3 gcd(4, 10) = 3 · 2 gcd(2, 5) = 6 · 1 = 6.
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Definition 2.31. The least common multiple of two nonzero integers a
and b, denoted by lcm(a, b), is the positive integer m satisfying

1. a | m and b | m,

2. a | c and b | c, with c>0, then m ≤ c.

Example 2.32. lcm(−12, 30) = 60.

Theorem 2.33. For positive integers a and b,

gcd(a, b) · lcm(a, b) = ab.

Corollary 2.34. Given positive integers a and b, lcm(a, b) = ab if and only
if gcd(a, b) = 1.
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2.4 THE DIOPHANTINE EQUATION ax+ by = c

Definition 2.35. Any equation in one or more unknowns which is to be
solved in integers is called Diophantine equation.

The linear Diophantine equation in two unknowns is of the form

ax+ by = c,

where a, b, c are given integers and a, b not both zero.
A solution of this equation is a pair of integers x0, y0 which satisfy it.

Example 2.36. The equation 3x+ 6y = 18 has solutions

3.4 + 6.1 = 18,

3(−6) + 6.6 = 18,

3.10 + 6(−2) = 18.

Example 2.37. The equation 4x+ 18y = 11 has no solution.

Theorem 2.38. The linear Diophantine equation ax+ by = c has a solution
if and only if d | c, where d = gcd(a, b). If x0, y0 is any particular solution of
this equation, then all other solutions are given by

x = x0 + (b/d)t, y = y0 − (a/d)t

for varying integers t.

Example 2.39. Solve the linear Diophantine equation

172x+ 20y = 1000.
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Example 2.40. Solve the following linear Diophantine equations

1. 24x+ 138y = 18,

2. 56x+ 72y = 40.

Corollary 2.41. If gcd(a, b) = 1 and if x0, y0 is a particular solution of the
linear Diophantine equation ax+ by = c, then all solutions are given by

x = x0 + bt, y = y0 − at

for integral values of t.
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3 Primes and their Distribution

Definition 3.1. An integer p>1 is called a prime number, or a prime,
if its only positive divisors are 1 and p. An integer greater than 1 which is
not a prime is called composite.

Theorem 3.2. If p is a prime and p | ab, then p | a or p | b.

Corollary 3.3. If p is a prime and p|a1a2 · · · an, then p|ak for some k, where
1 ≤ k ≤ n.

Corollary 3.4. If p, q1, q2, · · · , qn are all primes and p|q1q2 · · · qn, then p = qk
for some k, where 1 ≤ k ≤ n.
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Theorem 3.5 (Fundamental Theorem of Arithmetic). Every positive
integer n > 1 is either a prime or a product of primes; this representation is
unique, apart from the order in which the factors occur.

Of course, several of the primes that appear in the factorization of a given
positive integer may be repeated, as is the case with

360 = 2 · 2 · 2 · 3 · 3 · 5.

By collecting like primes and replacing them by a single factor, we can
rephrase Theorem 3.5 as a corollary.

Corollary 3.6. Any positive integer n > 1 can be written uniquely in a
canonical form

n = pk11 pk22 · · · pkrr
where, for i = 1, 2, ..., r, each ki is a positive integer and each pi is a prime,
with p1 < p2 < · · · < pr·

Example 3.7.
360 = 23 · 32 · 5,

4725 = 33 · 52 · 7,

17460 = 23 · 32 · 5 · 72.

Prime factorizations provide another means of calculating greatest com-
mon divisors. For suppose that p1, p2, · · · , pn are the distinct primes that
divide either of a or b. Allowing zero exponents, we can write

a = pk11 pk22 · · · pknn , b = pj11 p
j2
2 · · · pjnn

Then
gcd(a, b) = pr11 pr22 · · · prnn

where ri = min(ki, ji), the smaller of the two exponents associated with pi
in the two representations.

Example 3.8.

4725 = 20 · 33 · 52 · 7, 17460 = 23 · 32 · 5 · 72

and so
gcd(4725, 17460) = 20 · 32 · 5 · 7 = 315.
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Theorem 3.9 (Pythagoras). The number
√
2 is irrational.

Theorem 3.10 (Euclid). There is an infinite number of primes.

Theorem 3.11. If pn is the nth prime number, then pn ≤ 22
n−1

.

Corollary 3.12. For n ≥ 1, there are at least n+ 1 primes less than 22
n
.
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Lemma 3.13. The product of two or more integers of the form 4n+ 1 is of
the same form.

Theorem 3.14. There are an infinite number of primes of the form 4n+3.
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4 The Theory of Congruences

4.1 CARL FRIEDRICH GAUSS

A short background about the German mathematician Carl Friedrich Gauss
(1777-1855).

4.2 BASIC PROPERTIES OF CONGRUENCE

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are
said to be congruent modulo n, symbolized by

a ≡ b (mod n)

if n divides the difference a − b; that is, provided that a − b = kn for some
integer k.
When n ∤ (a − b), we say that a is incongruent to b modulo n, and in
this case we write a ̸≡ b (mod n).

Example 4.2. To fix the idea, consider n = 7.

(1) 3 ≡ 24 (mod 7),

(2) 25 ̸≡ 12 (mod 7).

Theorem 4.3. For arbitrary integers a and b, a ≡ b (mod n) if and only if
a and b leave the same nonnegative remainder when divided by n.
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Theorem 4.4. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then
the following properties hold:

(1) a ≡ a (mod n).

(2) If a ≡ b (mod n), then b ≡ a (mod n).

(3) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

(4) If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and
ac ≡ bd (mod n).

(5) If a ≡ b (mod n), then a+ c ≡ b+ c (mod n) and ac ≡ bc (mod n).

(6) If a ≡ b (mod n), then ak ≡ bk (mod n) for any positive integer k.

Example 4.5. Show that 41 divides 220 − 1.

Example 4.6. Find the remainder when the sum

1! + 2! + 3! + 4! + · · ·+ 99! + 100!

is divided by 12.
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Theorem 4.7. If ca ≡ cb (mod n), then a ≡ b (mod n/d), where d =
gcd(c, n).

Corollary 4.8. If ca ≡ cb (mod n) and gcd(c, n) = 1, then a ≡ b (mod n).

Corollary 4.9. If ca ≡ cb (mod p) and p ∤ c, where p is a prime number,
then a ≡ b (mod p).

4.3 SPECIAL DIVISIBILITY TEST

Given an integer b > 1, any positive integer N can be written uniquely in
terms of powers of b as

N = amb
m + am−1b

m−1 + · · · a2b2 + a1b+ a0,

where the coefficients ak can take on the b different values 0, 1, 2, · · · , b− 1.
Thus, the number N may be replaced by the simpler symbol

N = (amam−1 · · · a2a1a0)b

(the right-hand side is not to be interpreted as a product, but only as an
abbreviation for N). We call this the base b place value notation for N .

When the base b = 2, and the resulting system of enumeration is called
the binary number system (from the Latin binarius, two). The fact that
when a number is written in the binary system only the integers 0 and 1
can appear as coefficients means that every positive integer is expressible in
exactly one way as a sum of distinct powers of 2.
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Example 4.10. The integer 105 can be written as

105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 2 + 1 = 26 + 25 + 23 + 1

or, in abbreviated form,
105 = (1101001)2

In the other direction, (1001111)2 translates into

1 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 1 · 2 + 1 = 79.

When b = 10, then it is called the decimal system (from the Latin
decem, ten). For example

2023 = 2 · 103 + 0 · 102 + 2 · 10 + 3.

Theorem 4.11. Let P (x) =
∑m

k=0 ckx
k be a polynomial function of x with

integral coefficients ck. If a ≡ b (mod n), then P (a) ≡ P (b) (mod n).

Note 4.12. If P (x) is a polynomial with integral coefficients, we say that a
is a solution of the congruence P (x) ≡ 0 (mod n) if P (a) ≡ 0 (mod n).

Corollary 4.13. If a is a solution of P (x) ≡ 0 (mod n) and a ≡ b (mod n),
then b also is a solution.
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Example 4.14. 4 is a solution of p(x) = x2 + x + 1 ≡ 0 (mod 3) and 4 ≡
1 (mod 3), then 1 is also a solution of p(x) because P (4) ≡ P (1) ≡ 0 (mod 3).

Theorem 4.15. Let N = am10
m + am−110

m−1 + · · · a2102 + a110 + a0 be
the decimal expansion of the positive integer N , 0 ≤ ak < 10, and let S =
a0 + a1 + · · ·+ am. Then 9 | N if and only if 9 | S.

Example 4.16. The number 149, 235, 678 is divisible by 9 because

1 + 4 + 9 + 2 + 3 + 5 + 6 + 7 + 8 = 45

is divisible by 9.

Theorem 4.17. Let N = am10
m + am−110

m−1 + · · · a2102 + a110 + a0 be
the decimal expansion of the positive integer N , 0 ≤ ak < 10, and let T =
a0 − a1 + a2 − · · ·+ (−1)mam. Then 11 | N if and only if 11 | T .

Example 4.18. The number 1, 571, 724. is divisible by 11 because

4− 2 + 7− 1 + 7− 5 + 1 = 11

is divisible by 11.
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4.4 LINEAR CONGRUENCES

Definition 4.19. An equation of the form ax ≡ b (mod n) is called a linear
congruence.

An integer x0 is called a solution of ax ≡ b (mod n) if ax0 ≡ b (mod n),
that is, n | (ax0 − b).

Theorem 4.20. The linear congruence ax ≡ b (mod n) has a solution if and
only if d | b, where d = gcd(a, n). If d | b, then it has d mutually incongruent
solutions modulo n.

Note that the solution of ax ≡ b (mod n) has the form

x = x0 +
n

d
t

for some choice of t.
Among the various integers satisfying the first of these formulas, consider

those that occur when t takes on the successive values t = 0, 1, 2, · · · , d− 1:

x0, x0 +
n

d
, x0 +

2n

d
, · · · , x0 +

(d− 1)n

d
.

Corollary 4.21. If gcd(a, n) = 1, then the linear congruence ax ≡ b (mod n)
has a unique solution modulo n.

Example 4.22. Solve the linear congruence 18x ≡ 30 (mod 42).
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Example 4.23. Solve the linear congruence 9x ≡ 21 (mod 30).

Example 4.24. Solve the linear congruence 6x ≡ 15 (mod 21).

Theorem 4.25 (Chinese Remainder Theorem). Let n1, n2, · · · , nr be
positive integers such that gcd(ni, nj) = 1 for i ̸= j. Then the system of
linear congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr)

has a simultaneous solution, which is unique modulo the integer n1n2 · · ·nr.
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Example 4.26. Solve the system

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7).

Example 4.27. Solve the system

x ≡ 0 (mod 3)

x ≡ 1 (mod 4)

x ≡ 9 (mod 23).
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5 Fermat’s Theorem

5.1 FERMAT’S LITTLE THEOREM

Theorem 5.1 (Fermat’s Little Theorem). If p is a prime and p ∤ a, then
ap−1 ≡ 1 (mod p).

Example 5.2. Take a = 2 and p = 7. Then

Corollary 5.3. If p is a prime, then ap ≡ a (mod p) for any integer a.
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Example 5.4. Show that (a+ 1)p ≡ a+ 1 (mod p).

Example 5.5. Show that 538 ≡ 4 (mod 11).

Lemma 5.6. If p and q are distinct primes such that ap ≡ a (mod q) and
aq ≡ a (mod p), then apq ≡ a (mod pq).

Example 5.7. 211 ≡ 2 (mod 31) and 231 ≡ 2 (mod 11). Then 211·31 ≡
2 (mod 11 · 31) or 2341 ≡ 2 (mod 341).
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Example 5.8. Find the units digit of 3100 by the use of Fermat’s Theorem.

Definition 5.9. A composite integer n is called pseudoprime whenever
n | 2n − 2.

The smallest four pseudoprimes are 341, 561, 645, and 1105.

Example 5.10. Show that 561 is a pseudoprime.

561 = 3 · 11 · 17.

5.2 WILSON’S THEOREM

Theorem 5.11 (Wilson). If p is a prime, then (p− 1)! ≡ −1 (mod p).

Example 5.12. Apply Wilson’s Theorem when p = 17.
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Solution: It is possible to divide the integers 2, 3, · · · , 15 into (p−3)/2 = 7
pairs each of whose products is congruent to 1 modulo 17. To write these
congruences out explicity:

2 · 9 ≡ 1 (mod 17),

3 · 6 ≡ 1 (mod 17),

4 · 13 ≡ 1 (mod 17),

5 · 7 ≡ 1 (mod 17),

10 · 12 ≡ 1 (mod 17),

8 · 15 ≡ 1 (mod 17),

11 · 14 ≡ 1 (mod 17).

Multiplying these congruences gives the result

15! = (2 · 9)(3 · 6)(4 · 13)(5 · 7)(10 · 12)(8 · 15)(11 · 14) ≡ 1 (mod 17)

and so
16! ≡ 16 ≡ −1 (mod 17).

Theorem 5.13. The quadratic congruence x2 + 1 ≡ 0 (mod p), where p is
an odd prime, has a solution if and only if p ≡ 1 (mod 4).

p must be of the form p = 4k + 1 and [(p− 1)/2]! satisfies the quadratic
congruence x2 + 1 ≡ 0 (mod p).

Example 5.14. Take p = 13.

Example 5.15. Show that x2 + 1 ≡ 0 (mod 3) has no solution.
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6 Number-Theoretic Functions

6.1 The Functions τ and σ

Definition 6.1. Given a positive integer n, let τ(n) denote the number of
positive divisors of n and σ(n) denote the sum of these divisors.

Example 6.2. Consider n = 12. Since 12 has the positive divisors 1, 2, 3, 4, 6, 12,
we find that

τ(12) = 6 and σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.

For the first few integers,

τ(1) = 1, τ(2) = 2, τ(3) = 2, τ(4) = 3, τ(5) = 2, τ(6) = 4, · · ·

and

σ(1) = 1, σ(2) = 3, σ(3) = 4, σ(4) = 7, σ(5) = 6, σ(6) = 12, · · · .

Remark 6.3.

It is not difficult to see that

1. τ(n) = 2 if and only if n is a prime number.

2. σ(n) = n+ 1 if and only if n is a prime number.

Theorem 6.4. If n = pk11 pk22 · · · pkrr is the prime factorization of n > 1, then
the positive divisors of n are precisely those integers d of the form

n = pa11 pa22 · · · parr

where 0 ≤ ai ≤ ki (i = 1, 2, · · · , r).

Theorem 6.5. If n = pk11 pk22 · · · pkrr is the prime factorization of n > 1, then

(a) τ(n) = (k1 + 1)(k2 + 1) · · · (kr + 1), and

(b) σ(n) =
p
k1+1
1 −1

p1−1

p
k2+1
2 −1

p2−1
· · · pkr+1

r −1
pr−1

.
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Example 6.6. The number 180 = 22 · 32 · 5 has

τ(180) = (2 + 1)(2 + 1)(1 + 1) = 18

positive divisors. The sum of these integers is

σ(n) =
23 − 1

2− 1

33 − 1

3− 1

52 − 1

5− 1
= 7 · 13 · 6 = 546.

Example 6.7. Find τ(18) and σ(18).

Example 6.8. Find τ(1575) and σ(1575), where 1575 = 32 · 52 · 7.

Remark 6.9.

τ(2 · 10) = τ(20) = 6 ̸= 2 · 4 = τ(2) · τ(10).

At the same time,

σ(2 · 10) = σ(20) = 42 ̸= 3 · 18 = σ(2) · σ(10).

These calculations bring out the nasty fact that, in general, it need not
be true that

τ(mn) = τ(m)τ(n) and σ(mn) = σ(m)σ(n).
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Definition 6.10. A number-theoretic function f is said to be multiplicative
if

f(mn) = f(m)f(n)

whenever gcd(m,n) = 1.

Remark 6.11. If f is multiplicative and n1, n2, · · · , nr are positive integers
that are pairwise relatively prime, then

f(n1n2 · · ·nr) = f(n1)f(n2) · · · f(nr).

Remark 6.12.

Multiplicative functions have one big advantage for us: they are com-
pletely determined once their values at prime powers are known. Indeed,
if n > 1 is a given positive integer, then we can write n = pk11 pk22 · · · pkrr in
canonical form; since the pkii are relatively prime in pairs, the multiplicative
property ensures that

f(n) = f(pk11 )f(pk22 ) · · · f(pkrr ).

If f is a multiplicative function that does not vanish identically, then there
exists an integer n such that f(n) ̸= 0. But

f(n) = f(n · 1) = f(n)f(1).

Being nonzero, f(n) may be canceled from both sides of this equation to give
f(1) = 1.

Theorem 6.13. The functions τ and σ are both multiplicative functions.
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Definition 6.14. A positive integer n is said to be

1. a deficient number if σ(n) < 2n,

2. an abundant number if σ(n) > 2n,

3. a perfect number if σ(n) = 2n.

Example 6.15.

6.2 The Möbius µ-function.

Definition 6.16. For a positive integer n, define µ by the rules

µ(n) =


1 if n = 1
0 if p2 | n for some prime p
(−1)r if n = p1p2 · · · pr, where pi are distinct primes

The first few values of µ are

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1, µ(6) = 1, · · · .

If p is a prime number, it is clear that µ(p) = −1; also, µ(pk) = 0 for
k ≥ 2.

Theorem 6.17. The function µ is a multiplicative function.
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Definition 6.18. The Liouville λ-function is defined by

λ(n) =

{
1 if n = 1

(−1)k1+k2+···+kr if n = pk11 pk22 · · · pkrr .

Example 6.19. λ(360) = λ(23 · 32 · 5) = (−1)3+2+l = (−1)6 = 1.

Theorem 6.20. The function λ is a multiplicative function.

6.3 The Greatest Integer Function

Definition 6.21. For an arbitrary real number x, we denote by [x] the largest
integer less than or equal to x; that is, [x] is the unique integer satisfying
x− 1 < [x] ≤ x.

Example 6.22. By way of illustration, [ ] assumes the particular values

[−3/2] = −2, [
√
2] = 1, [1/3] = 0, [π] = 3, [−π] = −4.

Note 6.23. From the Definition 6.21, we observe the following

1. [x] = x if and only if x is an integer.

2. Any real number x can be written as x = [x] + θ for a suitable choice
of θ, with 0 ≤ θ < 1.

33



We now plan to investigate the question of how many times a particular
prime p appears in n!. For instance, if p = 3 and n = 9, then

9! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9
= 27 · 34 · 5 · 7,

so that the exact power of 3 that divides 9! is 4.

Theorem 6.24. If n is a positive integer and p a prime, then the exponent
of the highest power of p that divides n! is

∞∑
k=1

[
n

pk
].

(This is not an infinite series, since [n/pk] = 0 for pk > n).

Example 6.25. Find the number of zeros with which the decimal represen-
tation of 50! terminates.

Theorem 6.26. If n and r are positive integers with 1 ≤ r < n, then the
binomial coefficient (

n

r

)
=

n!

r!(n− r)!

is also an integer.

Corollary 6.27. For a positive integer r, the product of any r consecutive
positive integers is divisible by r!.
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Example 6.28. (n − 1)n(n + 1) is divisible by 3! = 6. That is, n3 − n is
divisible by 6.
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7 Euler’s Generalization of Fermat’s Theo-

rem

7.1 LEONHARD EULER

A short background about the Swiss mathematician Leonhard Euler (1707-
1783).

7.2 EULER’S PHI-FUNCTION

Definition 7.1. For n ≥ 1, let ϕ(n) denote the number of positive integers
not exceeding n that are relatively prime to n.

Example 7.2. To illustrate the definition,

1. ϕ(9) = 6, and

2. ϕ(15) = 8.

For the first few positive integers,

ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6, · · · .

Remark 7.3. ϕ(n) = n− 1 if and only if n is prime.

Theorem 7.4. If p is a prime and k > 0, then

ϕ(pk) = pk − pk−1 = pk(1− 1

p
).
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Example 7.5. ϕ(16) = ϕ(24) = 24 − 23 = 8.

Lemma 7.6. Given integers a, b, c, gcd(a, bc) = 1 if and only if gcd(a, b) = 1
and gcd(a, c) = 1.

Theorem 7.7. The function ϕ is a multiplicative function.

Theorem 7.8. If the integer n > 1 has the prime factorization n = pk11 pk22 · · · pkrr ,
then

ϕ(n) = (pk11 − pk1−1
1 )(pk22 − pk2−1

2 ) · · · (pkrr − pkr−1
r )

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pr
).

Example 7.9.

To calculate ϕ(360). The prime-power decomposition of 360 is 23 · 32 · 5.
By Theorem 7.8,

ϕ(360) = 360(1− 1

2
)(1− 1

3
)(1− 1

5
)

= 360 · 1
2
· 2
3
· 4
5
= 96.
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Theorem 7.10. For n > 2, ϕ(n) is an even integer.

7.3 EULER’S THEOREM

Lemma 7.11. Let n > 1 and gcd(a, n) = 1. If a1, a2, · · · , aϕ(n) are the
positive integers less than n and relatively prime to n, then

aa1, aa2, · · · , aaϕ(n)

are congruent modulo n to a1, a2, · · · , aϕ(n) in some order.

Theorem 7.12 (Euler). If n ≥ 1 and gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Example 7.13. To illustrate the proof, take n = 9 and a = −4. Then

38



Remark 7.14. If p is a prime, then ϕ(p) = p−1; hence, whenever gcd(a, p) =
1, we get

ap−1 ≡ aϕ(n) ≡ 1 (mod n)

and so we have the following corollary.

Corollary 7.15 (Fermat). If p is a prime and p ∤ a, then ap−1 ≡ 1 (mod n).

Example 7.16. Find the last two digits in the decimal representation of 3203.
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