Number Theory

Dr. Sanhan M. S. Khasraw
Salahaddin University-Erbil
College of Education
Department of Mathematics
Fourth Year
Spring 2022-2023

1 Some Preliminary Considerations

Well-Ordering Priciple. Every nonempty set S of nonnegative integers contains a least element; that is, there is some integer a in S such that $a \leq b$ for all b belonging to S.

Theorem 1.1. (Archimedean Property)

If a and b are any positive integers, then there exists a positive integer n such that $n a \geq b$.

Theorem 1.2. (Principle of Finite Induction)
Let S be a set of positive integers with the following properties:
(i) 1 belongs to S, and
(ii) Whenever the integer k is in S, the next integer $k+1$ must also be in S.

Then S is the set of all positive integers.
Definition 1.3. For any positive integer n and any integer k satisfying $0 \leq k \leq n$, the binomial coefficients are defined by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Theorem 1.4. (Pascal's Rule)
For $1 \leq k \leq n$,

$$
\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k} .
$$

2 Divisibility Theory in the Integers

"Integral numbers are the fountainhead of all mathematics".
H. MINKOWSKI

2.1 THE DIVISION ALGORITHM

Theorem 2.1. (Division Algorithm). Given integers a and b, with $b>0$, there exist unique integers q and r satisfying

$$
a=q b+r, \quad 0 \leq r<b .
$$

The integers q and r are called, respectively, the quotient and remainder in the division of a by b.

Corollary 2.2. If a and b are integers, with $b \neq 0$, then there exist unique integers q and r such that

$$
a=q b+r, \quad 0 \leq r<|b| .
$$

Definition 2.3. An integer n is even if $n=2 k$ for some k, and is odd if $n=2 k+1$ for some k.

Example 2.4. The square of an integer leaves the remainder 0 or 1 upon division by 4.

2.2 THE GREATEST COMMON DIVISOR

Definition 2.5. An integer b is said to be divisible by an integer $a \neq 0$, in symbols $a \mid b$, if there exits some integer c such that

$$
b=a c .
$$

We write $a \nmid b$ to indicate that b is not divisible by a.

Example 2.6. .

(1) $3 \mid 12$,
(2) $3 \nmid 10$.

Theorem 2.7. For integers a, b, c, d, the following hold:

1. $a|0,1| a, a \mid a$.
2. $a \mid 1$ if and only if $a= \pm 1$.
3. If $a \mid b$ and $c \mid d$, then $a c \mid b d$.
4. If $a \mid b$ and $b \mid c$, then $a \mid c$.
5. $a \mid b$ and $b \mid a$ if and only if $a= \pm b$.
6. If $a \mid b$ and $b \neq 0$, then $|a| \leq|b|$.
7. If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for arbitrary integers x and y.

Definition 2.8. If a and b are arbitrary integers, then an integer d is said to be a common divisor of a and b if both $d \mid a$ and $d \mid b$.

Definition 2.9. Let a and b be given integers, with at least one of them different form zero. The greatest common divisor of a and b, dented by $\boldsymbol{g c d}(\boldsymbol{a}, \boldsymbol{b})$, is the positive integer d satisfying

1. $d \mid a$ and $d \mid b$,
2. if $c \mid a$ and $c \mid b$, then $c \leq d$.

Example 2.10. The positive divisors of -12 are $1,2,3,4,6,12$, while those of 30 are $1,2,3,5,6,10,15,30$, hence, the positive common divisors of -12 and 30 are 1, 2, 3, 6.
Since $\boldsymbol{6}$ is the largest of these integers, it follows that $\operatorname{gcd}(-12,30)=6$.
Example 2.11. $\operatorname{gcd}(-5,5)=5, \quad \operatorname{gcd}(8,15)=1, \quad \operatorname{gcd}(-8,-36)=4$.
Theorem 2.12. Given integers a and b, not both of which are zero, there exist integers x and y such that

$$
\operatorname{gcd}(a, b)=a x+b y
$$

Corollary 2.13. If a and b are given integers, not both zero, then the set $T=\{a x+b y \mid x, y$ are integers $\}$ is precisely the set of all multiples of $d=\operatorname{gcd}(a, b)$.

Example 2.14.

$$
\begin{gathered}
\operatorname{gcd}(-12,30)=6=(-12) \cdot 2+(30) \cdot 1, \\
\operatorname{gcd}(-8,-36)=4=(-8) \cdot 4+(-36) \cdot(-1) .
\end{gathered}
$$

Definition 2.15. Two integers a and b, not both of which are zero, are said to be relatively prime whenever $\operatorname{gcd}(a, b)=1$.

Example 2.16. Since $\operatorname{gcd}(8,15)=1$, then 8 and 15 are relatively prime.
Theorem 2.17. Let a and b be integers, not both zero. Then a and b are relatively prime if and only if there exist integers x and y such that $1=$ $a x+b y$.

Corollary 2.18. If $\operatorname{gcd}(a, b)=d$, then $\operatorname{gcd}(a / d, b / d)=1$.

Example 2.19. $\operatorname{gcd}(-12,30)=6$ and $\operatorname{gcd}(-12 / 6,30 / 6)=\operatorname{gcd}(-2,5)=1$.
Remark 2.20. It is not true, without adding an extra condition, that a|c and $b \mid c$ together give $a b \mid c$. For instance, $10 \mid 30$ and $15 \mid 30$, but $10 \cdot 15 \nmid 30$.

Corollary 2.21. If $a \mid c$ and $b \mid c$, with $\operatorname{gcd}(a, b)=1$, then $a b \mid c$.

Theorem 2.22. (Euclid's Lemma) If $a \mid b c$, with $g c d(a, b)=1$, then $a \mid c$.

Remark 2.23. If a and b are not relatively prime, then the conclusion of Euclid's Lemma may fail to hold. For example, $10 \mid 5 \cdot 6$ but $10 \nmid 5$ and $10 \nmid 6$.

Theorem 2.24. Let a, b be integers, not both zero. For a positive integer d, $d=\operatorname{gcd}(a, b)$ if and only if

1. $d \mid a$ and $d \mid b$,
2. whenever $c \mid a$ and $c \mid b$, then $c \mid d$.

2.3 THE EUCLIDEAN ALGORITHM

Lemma 2.25. If $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Example 2.26. Find $\operatorname{gcd}(195,70)$.

Example 2.27. Find $\operatorname{gcd}(295,140)$ and $\operatorname{gcd}(12378,3054)$.
Theorem 2.28. If $k>0$, then $\operatorname{gcd}(k a, k b)=k \operatorname{gcd}(a, b)$.
Corollary 2.29. For any integer $k \neq 0, \operatorname{gcd}(k a, k b)=|k| \operatorname{gcd}(a, b)$.

Example 2.30. $\operatorname{gcd}(12,30)=3 \operatorname{gcd}(4,10)=3 \cdot 2 \operatorname{gcd}(2,5)=6 \cdot 1=6$.

Definition 2.31. The least common multiple of two nonzero integers a and b, denoted by lcm (a, b), is the positive integer m satisfying

1. $a \mid m$ and $b \mid m$,
2. $a \mid c$ and $b \mid c$, with $c>0$, then $m \leq c$.

Example 2.32. $\operatorname{lcm}(-12,30)=60$.
Theorem 2.33. For positive integers a and b,

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b .
$$

Corollary 2.34. Given positive integers a and $b, \operatorname{lcm}(a, b)=a b$ if and only if $\operatorname{gcd}(a, b)=1$.

2.4 THE DIOPHANTINE EQUATION $a x+b y=c$

Definition 2.35. Any equation in one or more unknowns which is to be solved in integers is called Diophantine equation.

The linear Diophantine equation in two unknowns is of the form

$$
a x+b y=c,
$$

where a, b, c are given integers and a, b not both zero.
A solution of this equation is a pair of integers x_{0}, y_{0} which satisfy it.
Example 2.36. The equation $3 x+6 y=18$ has solutions

$$
\begin{gathered}
3.4+6.1=18 \\
3(-6)+6.6=18 \\
3.10+6(-2)=18
\end{gathered}
$$

Example 2.37. The equation $4 x+18 y=11$ has no solution.
Theorem 2.38. The linear Diophantine equation $a x+b y=c$ has a solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$. If x_{0}, y_{0} is any particular solution of this equation, then all other solutions are given by

$$
x=x_{0}+(b / d) t, \quad y=y_{0}-(a / d) t
$$

for varying integers t.
Example 2.39. Solve the linear Diophantine equation

$$
172 x+20 y=1000 .
$$

Example 2.40. Solve the following linear Diophantine equations

1. $24 x+138 y=18$,
2. $56 x+72 y=40$.

Corollary 2.41. If $\operatorname{gcd}(a, b)=1$ and if x_{0}, y_{0} is a particular solution of the linear Diophantine equation $a x+b y=c$, then all solutions are given by

$$
x=x_{0}+b t, \quad y=y_{0}-a t
$$

for integral values of t.

3 Primes and their Distribution

Definition 3.1. An integer $p>1$ is called a prime number, or a prime, if its only positive divisors are 1 and p. An integer greater than 1 which is not a prime is called composite.

Theorem 3.2. If p is a prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.

Corollary 3.3. If p is a prime and $p \mid a_{1} a_{2} \cdots a_{n}$, then $p \mid a_{k}$ for some k, where $1 \leq k \leq n$.

Corollary 3.4. If $p, q_{1}, q_{2}, \cdots, q_{n}$ are all primes and $p \mid q_{1} q_{2} \cdots q_{n}$, then $p=q_{k}$ for some k, where $1 \leq k \leq n$.

Theorem 3.5 (Fundamental Theorem of Arithmetic). Every positive integer $n>1$ is either a prime or a product of primes; this representation is unique, apart from the order in which the factors occur.

Of course, several of the primes that appear in the factorization of a given positive integer may be repeated, as is the case with

$$
360=2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5
$$

By collecting like primes and replacing them by a single factor, we can rephrase Theorem 3.5 as a corollary.

Corollary 3.6. Any positive integer $n>1$ can be written uniquely in a canonical form

$$
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}
$$

where, for $i=1,2, \ldots, r$, each k_{i} is a positive integer and each p_{i} is a prime, with $p_{1}<p_{2}<\cdots<p_{r}$.

Example 3.7.

$$
\begin{gathered}
360=2^{3} \cdot 3^{2} \cdot 5, \\
4725=3^{3} \cdot 5^{2} \cdot 7, \\
17460=2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} .
\end{gathered}
$$

Prime factorizations provide another means of calculating greatest common divisors. For suppose that $p_{1}, p_{2}, \cdots, p_{n}$ are the distinct primes that divide either of a or b. Allowing zero exponents, we can write

$$
a=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{n}^{k_{n}}, \quad b=p_{1}^{j_{1}} p_{2}^{j_{2}} \cdots p_{n}^{j_{n}}
$$

Then

$$
\operatorname{gcd}(a, b)=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{n}^{r_{n}}
$$

where $r_{i}=\min \left(k_{i}, j_{i}\right)$, the smaller of the two exponents associated with p_{i} in the two representations.

Example 3.8.

$$
4725=2^{0} \cdot 3^{3} \cdot 5^{2} \cdot 7, \quad 17460=2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2}
$$

and so

$$
\operatorname{gcd}(4725,17460)=2^{0} \cdot 3^{2} \cdot 5 \cdot 7=315 .
$$

Theorem 3.9 (Pythagoras). The number $\sqrt{2}$ is irrational.

Theorem 3.10 (Euclid). There is an infinite number of primes.

Theorem 3.11. If p_{n} is the nth prime number, then $p_{n} \leq 2^{2^{n-1}}$.

Corollary 3.12. For $n \geq 1$, there are at least $n+1$ primes less than $2^{2^{n}}$.

Lemma 3.13. The product of two or more integers of the form $4 n+1$ is of the same form.

Theorem 3.14. There are an infinite number of primes of the form $4 n+3$.

4 The Theory of Congruences

4.1 CARL FRIEDRICH GAUSS

A short background about the German mathematician Carl Friedrich Gauss (1777-1855).

4.2 BASIC PROPERTIES OF CONGRUENCE

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo n, symbolized by

$$
a \equiv b(\bmod n)
$$

if n divides the difference $a-b$; that is, provided that $a-b=k n$ for some integer k.
When $n \nmid(a-b)$, we say that a is incongruent to b modulo n, and in this case we write $a \not \equiv b(\bmod n)$.

Example 4.2. To fix the idea, consider $n=7$.
(1) $3 \equiv 24(\bmod 7)$,
(2) $25 \not \equiv 12(\bmod 7)$.

Theorem 4.3. For arbitrary integers a and $b, a \equiv b(\bmod n)$ if and only if a and b leave the same nonnegative remainder when divided by n.

Theorem 4.4. Let $n>1$ be fixed and a, b, c, d be arbitrary integers. Then the following properties hold:
(1) $a \equiv a(\bmod n)$.
(2) If $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$.
(3) If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
(4) If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a c \equiv b d(\bmod n)$.
(5) If $a \equiv b(\bmod n)$, then $a+c \equiv b+c(\bmod n) a n d a c \equiv b c(\bmod n)$.
(6) If $a \equiv b(\bmod n)$, then $a^{k} \equiv b^{k}(\bmod n)$ for any positive integer k.

Example 4.5. Show that 41 divides $2^{20}-1$.

Example 4.6. Find the remainder when the sum

$$
1!+2!+3!+4!+\cdots+99!+100!
$$

is divided by 12.

Theorem 4.7. If $c a \equiv c b(\bmod n)$, then $a \equiv b(\bmod n / d)$, where $d=$ $\operatorname{gcd}(c, n)$.

Corollary 4.8. If $c a \equiv c b(\bmod n)$ and $g c d(c, n)=1$, then $a \equiv b(\bmod n)$.

Corollary 4.9. If $c a \equiv c b(\bmod p)$ and $p \nmid c$, where p is a prime number, then $a \equiv b(\bmod p)$.

4.3 SPECIAL DIVISIBILITY TEST

Given an integer $b>1$, any positive integer N can be written uniquely in terms of powers of b as

$$
N=a_{m} b^{m}+a_{m-1} b^{m-1}+\cdots a_{2} b^{2}+a_{1} b+a_{0}
$$

where the coefficients a_{k} can take on the b different values $0,1,2, \cdots, b-1$. Thus, the number N may be replaced by the simpler symbol

$$
N=\left(a_{m} a_{m-1} \cdots a_{2} a_{1} a_{0}\right)_{b}
$$

(the right-hand side is not to be interpreted as a product, but only as an abbreviation for $N)$. We call this the base b place value notation for N.

When the base $b=2$, and the resulting system of enumeration is called the binary number system (from the Latin binarius, two). The fact that when a number is written in the binary system only the integers 0 and 1 can appear as coefficients means that every positive integer is expressible in exactly one way as a sum of distinct powers of 2 .

Example 4.10. The integer 105 can be written as

$$
105=1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2+1=2^{6}+2^{5}+2^{3}+1
$$

or, in abbreviated form,

$$
105=(1101001)_{2}
$$

In the other direction, $(1001111)_{2}$ translates into

$$
1 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+1=79
$$

When $b=10$, then it is called the decimal system (from the Latin decem, ten). For example

$$
2023=2 \cdot 10^{3}+0 \cdot 10^{2}+2 \cdot 10+3
$$

Theorem 4.11. Let $P(x)=\sum_{k=0}^{m} c_{k} x^{k}$ be a polynomial function of x with integral coefficients c_{k}. If $a \equiv b(\bmod n)$, then $P(a) \equiv P(b)(\bmod n)$.

Note 4.12. If $P(x)$ is a polynomial with integral coefficients, we say that a is a solution of the congruence $P(x) \equiv 0(\bmod n)$ if $P(a) \equiv 0(\bmod n)$.

Corollary 4.13. If a is a solution of $P(x) \equiv 0(\bmod n)$ and $a \equiv b(\bmod n)$, then b also is a solution.

Example 4.14. 4 is a solution of $p(x)=x^{2}+x+1 \equiv 0(\bmod 3)$ and $4 \equiv$ $1(\bmod 3)$, then 1 is also a solution of $p(x)$ because $P(4) \equiv P(1) \equiv 0(\bmod 3)$.

Theorem 4.15. Let $N=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\cdots a_{2} 10^{2}+a_{1} 10+a_{0}$ be the decimal expansion of the positive integer $N, 0 \leq a_{k}<10$, and let $S=$ $a_{0}+a_{1}+\cdots+a_{m}$. Then $9 \mid N$ if and only if $9 \mid S$.

Example 4.16. The number 149, 235, 678 is divisible by 9 because

$$
1+4+9+2+3+5+6+7+8=45
$$

is divisible by 9 .
Theorem 4.17. Let $N=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\cdots a_{2} 10^{2}+a_{1} 10+a_{0}$ be the decimal expansion of the positive integer $N, 0 \leq a_{k}<10$, and let $T=$ $a_{0}-a_{1}+a_{2}-\cdots+(-1)^{m} a_{m}$. Then $11 \mid N$ if and only if $11 \mid T$.

Example 4.18. The number $1,571,724$. is divisible by 11 because

$$
4-2+7-1+7-5+1=11
$$

is divisible by 11 .

4.4 LINEAR CONGRUENCES

Definition 4.19. An equation of the form $a x \equiv b(\bmod n)$ is called a linear congruence.

An integer x_{0} is called a solution of $a x \equiv b(\bmod n)$ if $a x_{0} \equiv b(\bmod n)$, that is, $n \mid\left(a x_{0}-b\right)$.

Theorem 4.20. The linear congruence $a x \equiv b(\bmod n)$ has a solution if and only if $d \mid b$, where $d=\operatorname{gcd}(a, n)$. If $d \mid b$, then it has d mutually incongruent solutions modulo n.

Note that the solution of $a x \equiv b(\bmod n)$ has the form

$$
x=x_{0}+\frac{n}{d} t
$$

for some choice of t.
Among the various integers satisfying the first of these formulas, consider those that occur when t takes on the successive values $t=0,1,2, \cdots, d-1$:

$$
x_{0}, x_{0}+\frac{n}{d}, x_{0}+\frac{2 n}{d}, \cdots, x_{0}+\frac{(d-1) n}{d} .
$$

Corollary 4.21. If $\operatorname{gcd}(a, n)=1$, then the linear congruence $a x \equiv b(\bmod n)$ has a unique solution modulo n.

Example 4.22. Solve the linear congruence $18 x \equiv 30(\bmod 42)$.

Example 4.23. Solve the linear congruence $9 x \equiv 21(\bmod 30)$.

Example 4.24. Solve the linear congruence $6 x \equiv 15(\bmod 21)$.

Theorem 4.25 (Chinese Remainder Theorem). Let $n_{1}, n_{2}, \cdots, n_{r}$ be positive integers such that $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then the system of linear congruences

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod n_{1}\right) \\
& x \equiv a_{2}\left(\bmod n_{2}\right) \\
& \vdots \\
& x \equiv a_{r}\left(\bmod n_{r}\right)
\end{aligned}
$$

has a simultaneous solution, which is unique modulo the integer $n_{1} n_{2} \cdots n_{r}$.

Example 4.26. Solve the system

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7) .
\end{aligned}
$$

Example 4.27. Solve the system

$$
\begin{aligned}
& x \equiv 0(\bmod 3) \\
& x \equiv 1(\bmod 4) \\
& x \equiv 9(\bmod 23) .
\end{aligned}
$$

5 Fermat's Theorem

5.1 FERMAT'S LITTLE THEOREM

Theorem 5.1 (Fermat's Little Theorem). If p is a prime and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.

Example 5.2. Take $a=2$ and $p=7$. Then

Corollary 5.3. If p is a prime, then $a^{p} \equiv a(\bmod p)$ for any integer a.

Example 5.4. Show that $(a+1)^{p} \equiv a+1(\bmod p)$.

Example 5.5. Show that $5^{38} \equiv 4(\bmod 11)$.

Lemma 5.6. If p and q are distinct primes such that $a^{p} \equiv a(\bmod q)$ and $a^{q} \equiv a(\bmod p)$, then $a^{p q} \equiv a(\bmod p q)$.

Example 5.7. $2^{11} \equiv 2(\bmod 31)$ and $2^{31} \equiv 2(\bmod 11)$. Then $2^{11 \cdot 31} \equiv$ $2(\bmod 11 \cdot 31)$ or $2^{341} \equiv 2(\bmod 341)$.

Example 5.8. Find the units digit of 3^{100} by the use of Fermat's Theorem.

Definition 5.9. A composite integer n is called pseudoprime whenever $n \mid 2^{n}-2$.

The smallest four pseudoprimes are 341, 561, 645, and 1105.
Example 5.10. Show that 561 is a pseudoprime.
$561=3 \cdot 11 \cdot 17$.

5.2 WILSON'S THEOREM

Theorem $5.11(\mathbf{W i l s o n})$. If p is a prime, then $(p-1)!\equiv-1(\bmod p)$.
Example 5.12. Apply Wilson's Theorem when $p=17$.

Solution: It is possible to divide the integers $2,3, \cdots, 15$ into $(p-3) / 2=7$ pairs each of whose products is congruent to 1 modulo 17 . To write these congruences out explicity:

$$
\begin{gathered}
2 \cdot 9 \equiv 1(\bmod 17), \\
3 \cdot 6 \equiv 1(\bmod 17), \\
4 \cdot 13 \equiv 1(\bmod 17), \\
5 \cdot 7 \equiv 1(\bmod 17), \\
10 \cdot 12 \equiv 1(\bmod 17), \\
8 \cdot 15 \equiv 1(\bmod 17), \\
11 \cdot 14 \equiv 1(\bmod 17)
\end{gathered}
$$

Multiplying these congruences gives the result

$$
15!=(2 \cdot 9)(3 \cdot 6)(4 \cdot 13)(5 \cdot 7)(10 \cdot 12)(8 \cdot 15)(11 \cdot 14) \equiv 1(\bmod 17)
$$

and so

$$
16!\equiv 16 \equiv-1(\bmod 17) .
$$

Theorem 5.13. The quadratic congruence $x^{2}+1 \equiv 0(\bmod p)$, where p is an odd prime, has a solution if and only if $p \equiv 1(\bmod 4)$.
p must be of the form $p=4 k+1$ and $[(p-1) / 2]$! satisfies the quadratic congruence $x^{2}+1 \equiv 0(\bmod p)$.

Example 5.14. Take $p=13$.

Example 5.15. Show that $x^{2}+1 \equiv 0(\bmod 3)$ has no solution.

6 Number-Theoretic Functions

6.1 The Functions τ and σ

Definition 6.1. Given a positive integer n, let $\tau(n)$ denote the number of positive divisors of n and $\sigma(n)$ denote the sum of these divisors.

Example 6.2. Consider $n=12$. Since 12 has the positive divisors 1, 2, 3, 4, 6, 12, we find that

$$
\tau(12)=6 \text { and } \sigma(12)=1+2+3+4+6+12=28
$$

For the first few integers,

$$
\tau(1)=1, \quad \tau(2)=2, \quad \tau(3)=2, \quad \tau(4)=3, \quad \tau(5)=2, \quad \tau(6)=4, \cdots
$$

and

$$
\sigma(1)=1, \quad \sigma(2)=3, \quad \sigma(3)=4, \quad \sigma(4)=7, \quad \sigma(5)=6, \quad \sigma(6)=12, \cdots .
$$

Remark 6.3.

It is not difficult to see that

1. $\tau(n)=2$ if and only if n is a prime number.
2. $\sigma(n)=n+1$ if and only if n is a prime number.

Theorem 6.4. If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ is the prime factorization of $n>1$, then the positive divisors of n are precisely those integers d of the form

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

where $0 \leq a_{i} \leq k_{i}(i=1,2, \cdots, r)$.

Theorem 6.5. If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ is the prime factorization of $n>1$, then
(a) $\tau(n)=\left(k_{1}+1\right)\left(k_{2}+1\right) \cdots\left(k_{r}+1\right)$, and
(b) $\sigma(n)=\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1} \frac{p_{2}^{k_{2}+1}-1}{p_{2}-1} \cdots \frac{p_{r}^{k_{r}+1}-1}{p_{r}-1}$.

Example 6.6. The number $180=2^{2} \cdot 3^{2} \cdot 5$ has

$$
\tau(180)=(2+1)(2+1)(1+1)=18
$$

positive divisors. The sum of these integers is

$$
\sigma(n)=\frac{2^{3}-1}{2-1} \frac{3^{3}-1}{3-1} \frac{5^{2}-1}{5-1}=7 \cdot 13 \cdot 6=546 .
$$

Example 6.7. Find $\tau(18)$ and $\sigma(18)$.

Example 6.8. Find $\tau(1575)$ and $\sigma(1575)$, where $1575=3^{2} \cdot 5^{2} \cdot 7$.

Remark 6.9.

$$
\tau(2 \cdot 10)=\tau(20)=6 \neq 2 \cdot 4=\tau(2) \cdot \tau(10)
$$

At the same time,

$$
\sigma(2 \cdot 10)=\sigma(20)=42 \neq 3 \cdot 18=\sigma(2) \cdot \sigma(10)
$$

These calculations bring out the nasty fact that, in general, it need not be true that

$$
\tau(m n)=\tau(m) \tau(n) \text { and } \sigma(m n)=\sigma(m) \sigma(n)
$$

Definition 6.10. A number-theoretic function f is said to be multiplicative if

$$
f(m n)=f(m) f(n)
$$

whenever $\operatorname{gcd}(m, n)=1$.

Remark 6.11. If f is multiplicative and $n_{1}, n_{2}, \cdots, n_{r}$ are positive integers that are pairwise relatively prime, then

$$
f\left(n_{1} n_{2} \cdots n_{r}\right)=f\left(n_{1}\right) f\left(n_{2}\right) \cdots f\left(n_{r}\right)
$$

Remark 6.12.

Multiplicative functions have one big advantage for us: they are completely determined once their values at prime powers are known. Indeed, if $n>1$ is a given positive integer, then we can write $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ in canonical form; since the $p_{i}^{k_{i}}$ are relatively prime in pairs, the multiplicative property ensures that

$$
f(n)=f\left(p_{1}^{k_{1}}\right) f\left(p_{2}^{k_{2}}\right) \cdots f\left(p_{r}^{k_{r}}\right)
$$

If f is a multiplicative function that does not vanish identically, then there exists an integer n such that $f(n) \neq 0$. But

$$
f(n)=f(n \cdot 1)=f(n) f(1) .
$$

Being nonzero, $f(n)$ may be canceled from both sides of this equation to give $f(1)=1$.

Theorem 6.13. The functions τ and σ are both multiplicative functions.

Definition 6.14. A positive integer n is said to be

1. a deficient number if $\sigma(n)<2 n$,
2. an abundant number if $\sigma(n)>2 n$,
3. a perfect number if $\sigma(n)=2 n$.

Example 6.15.

6.2 The Möbius μ-function.

Definition 6.16. For a positive integer n, define μ by the rules

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } p^{2} \mid n \text { for some prime } p \\ (-1)^{r} & \text { if } n=p_{1} p_{2} \cdots p_{r}, \text { where } p_{i} \text { are distinct primes }\end{cases}
$$

The first few values of μ are

$$
\mu(1)=1, \quad \mu(2)=-1, \quad \mu(3)=-1, \quad \mu(4)=0, \quad \mu(5)=-1, \quad \mu(6)=1, \cdots .
$$

If p is a prime number, it is clear that $\mu(p)=-1$; also, $\mu\left(p^{k}\right)=0$ for $k \geq 2$.

Theorem 6.17. The function μ is a multiplicative function.

Definition 6.18. The Liouville λ-function is defined by

$$
\lambda(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{k_{1}+k_{2}+\cdots+k_{r}} & \text { if } n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} .\end{cases}
$$

Example 6.19. $\lambda(360)=\lambda\left(2^{3} \cdot 3^{2} \cdot 5\right)=(-1)^{3+2+l}=(-1)^{6}=1$.

Theorem 6.20. The function λ is a multiplicative function.

6.3 The Greatest Integer Function

Definition 6.21. For an arbitrary real number x, we denote by $[x]$ the largest integer less than or equal to x; that is, $[x]$ is the unique integer satisfying $x-1<[x] \leq x$.

Example 6.22. By way of illustration, [] assumes the particular values

$$
[-3 / 2]=-2,[\sqrt{2}]=1,[1 / 3]=0,[\pi]=3,[-\pi]=-4
$$

Note 6.23. From the Definition 6.21, we observe the following

1. $[x]=x$ if and only if x is an integer.
2. Any real number x can be written as $x=[x]+\theta$ for a suitable choice of θ, with $0 \leq \theta<1$.

We now plan to investigate the question of how many times a particular prime p appears in $n!$. For instance, if $p=3$ and $n=9$, then

$$
\begin{aligned}
9! & =1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \\
& =2^{7} \cdot 3^{4} \cdot 5 \cdot 7,
\end{aligned}
$$

so that the exact power of 3 that divides 9 ! is 4 .

Theorem 6.24. If n is a positive integer and p a prime, then the exponent of the highest power of p that divides n ! is

$$
\sum_{k=1}^{\infty}\left[\frac{n}{p^{k}}\right] .
$$

(This is not an infinite series, since $\left[n / p^{k}\right]=0$ for $p^{k}>n$).

Example 6.25. Find the number of zeros with which the decimal representation of 50! terminates.

Theorem 6.26. If n and r are positive integers with $1 \leq r<n$, then the binomial coefficient

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

is also an integer.

Corollary 6.27. For a positive integer r, the product of any r consecutive positive integers is divisible by r!.

Example 6.28. $(n-1) n(n+1)$ is divisible by $3!=6$. That is, $n^{3}-n$ is divisible by 6.

7 Euler's Generalization of Fermat's Theorem

7.1 LEONHARD EULER

A short background about the Swiss mathematician Leonhard Euler (17071783).

7.2 EULER'S PHI-FUNCTION

Definition 7.1. For $n \geq 1$, let $\phi(n)$ denote the number of positive integers not exceeding n that are relatively prime to n.

Example 7.2. To illustrate the definition,

1. $\phi(9)=6$, and
2. $\phi(15)=8$.

For the first few positive integers,

$$
\phi(1)=1, \quad \phi(2)=1, \quad \phi(3)=2, \quad \phi(4)=2, \quad \phi(5)=4, \quad \phi(6)=2, \quad \phi(7)=6, \cdots .
$$

Remark 7.3. $\phi(n)=n-1$ if and only if n is prime.

Theorem 7.4. If p is a prime and $k>0$, then

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}\left(1-\frac{1}{p}\right)
$$

Example 7.5. $\phi(16)=\phi\left(2^{4}\right)=2^{4}-2^{3}=8$.
Lemma 7.6. Given integers $a, b, c, \operatorname{gcd}(a, b c)=1$ if and only if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$.

Theorem 7.7. The function ϕ is a multiplicative function.
Theorem 7.8. If the integer $n>1$ has the prime factorization $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, then

$$
\begin{aligned}
\phi(n) & =\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right)\left(p_{2}^{k_{2}}-p_{2}^{k_{2}-1}\right) \cdots\left(p_{r}^{k_{r}}-p_{r}^{k_{r}-1}\right) \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) .
\end{aligned}
$$

Example 7.9.

To calculate $\phi(360)$. The prime-power decomposition of 360 is $2^{3} \cdot 3^{2} \cdot 5$. By Theorem 7.8,

$$
\begin{aligned}
\phi(360) & =360\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \\
& =360 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5}=96 .
\end{aligned}
$$

Theorem 7.10. For $n>2, \phi(n)$ is an even integer.

7.3 EULER'S THEOREM

Lemma 7.11. Let $n>1$ and $\operatorname{gcd}(a, n)=1$. If $a_{1}, a_{2}, \cdots, a_{\phi(n)}$ are the positive integers less than n and relatively prime to n, then

$$
a a_{1}, a a_{2}, \cdots, a a_{\phi(n)}
$$

are congruent modulo n to $a_{1}, a_{2}, \cdots, a_{\phi(n)}$ in some order.

Theorem $7.12($ Euler $)$. If $n \geq 1$ and $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$.

Example 7.13. To illustrate the proof, take $n=9$ and $a=-4$. Then

Remark 7.14. If p is a prime, then $\phi(p)=p-1$; hence, whenever $\operatorname{gcd}(a, p)=$ 1, we get

$$
a^{p-1} \equiv a^{\phi(n)} \equiv 1(\bmod n)
$$

and so we have the following corollary.
Corollary 7.15 (Fermat). If p is a prime and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod n)$.

Example 7.16. Find the last two digits in the decimal representation of 3^{203}.

