Number Theory

Dr. Sanhan M. S. Khasraw

Salahaddin University-Erbil College of Education Department of Mathematics Fourth Year Spring 2022-2023

1 Some Preliminary Considerations

Well-Ordering Priciple. Every nonempty set S of nonnegative integers contains a least element; that is, there is some integer a in S such that $a \leq b$ for all b belonging to S.

Theorem 1.1. (Archimedean Property)

If a and b are any positive integers, then there exists a positive integer n such that $na \geq b$.

Theorem 1.2. (Principle of Finite Induction)

Let S be a set of positive integers with the following properties:

- (i) 1 belongs to S, and
- (ii) Whenever the integer k is in S, the next integer k+1 must also be in S.

Then S is the set of all positive integers.

Definition 1.3. For any positive integer n and any integer k satisfying $0 \le k \le n$, the **binomial coefficients** are defined by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Theorem 1.4. (Pascal's Rule)

For $1 \leq k \leq n$,

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}.$$

2 Divisibility Theory in the Integers

"Integral numbers are the fountainhead of all mathematics".

H. MINKOWSKI

2.1 THE DIVISION ALGORITHM

Theorem 2.1. (Division Algorithm). Given integers a and b, with b > 0, there exist unique integers q and r satisfying

$$a = qb + r,$$
 $0 \le r < b.$

The integers q and r are called, respectively, the **quotient** and **remainder** in the division of a by b.

Corollary 2.2. If a and b are integers, with $b \neq 0$, then there exist unique integers q and r such that

$$a = qb + r, \qquad 0 \le r < |b|.$$

Definition 2.3. An integer n is **even** if n = 2k for some k, and is **odd** if n = 2k + 1 for some k.

Example 2.4. The square of an integer leaves the remainder 0 or 1 upon division by 4.

2.2 THE GREATEST COMMON DIVISOR

Definition 2.5. An integer b is said to be **divisible** by an integer $a \neq 0$, in symbols $a \mid b$, if there exits some integer c such that

$$b = ac$$
.

We write $a \nmid b$ to indicate that b is not divisible by a.

Example 2.6. .

- (1) 3 | 12,
- (2) $3 \nmid 10$.

Theorem 2.7. For integers a, b, c, d, the following hold:

- 1. $a \mid 0$, $1 \mid a$, $a \mid a$.
- 2. $a \mid 1$ if and only if $a = \pm 1$.
- 3. If $a \mid b$ and $c \mid d$, then $ac \mid bd$.
- 4. If $a \mid b$ and $b \mid c$, then $a \mid c$.
- 5. $a \mid b$ and $b \mid a$ if and only if $a = \pm b$.
- 6. If $a \mid b$ and $b \neq 0$, then $|a| \leq |b|$.
- 7. If $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for arbitrary integers x and y.

Definition 2.8. If a and b are arbitrary integers, then an integer d is said to be a **common divisor** of a and b if both $d \mid a$ and $d \mid b$.

Definition 2.9. Let a and b be given integers, with at least one of them different form zero. The **greatest common divisor** of a and b, dented by gcd(a, b), is the positive integer d satisfying

- 1. $d \mid a \text{ and } d \mid b$,
- 2. if $c \mid a$ and $c \mid b$, then $c \leq d$.

Example 2.10. The positive divisors of -12 are 1, 2, 3, 4, 6, 12, while those of 30 are 1, 2, 3, 5, 6, 10, 15, 30, hence, the positive common divisors of -12 and 30 are 1, 2, 3, 6.

Since 6 is the largest of these integers, it follows that gcd(-12, 30) = 6.

Example 2.11. gcd(-5,5) = 5, gcd(8,15) = 1, gcd(-8,-36) = 4.

Theorem 2.12. Given integers a and b, not both of which are zero, there exist integers x and y such that

$$gcd(a,b) = ax + by.$$

Corollary 2.13. If a and b are given integers, not both zero, then the set $T = \{ax + by \mid x, y \text{ are integers}\}\$ is precisely the set of all multiples of $d = \gcd(a,b)$.

Example 2.14.

$$gcd(-12,30) = 6 = (-12) \cdot 2 + (30) \cdot 1,$$

$$gcd(-8, -36) = 4 = (-8) \cdot 4 + (-36) \cdot (-1).$$

Definition 2.15. Two integers a and b, not both of which are zero, are said to be **relatively prime** whenever gcd(a,b) = 1.

Example 2.16. Since gcd(8, 15) = 1, then 8 and 15 are relatively prime.

Theorem 2.17. Let a and b be integers, not both zero. Then a and b are relatively prime if and only if there exist integers x and y such that 1 = ax + by.

Corollary 2.18. If gcd(a,b) = d, then gcd(a/d,b/d) = 1.

Example 2.19. gcd(-12,30) = 6 and gcd(-12/6,30/6) = gcd(-2,5) = 1.

Remark 2.20. It is not true, without adding an extra condition, that $a \mid c$ and $b \mid c$ together give $ab \mid c$. For instance, $10 \mid 30$ and $15 \mid 30$, but $10 \cdot 15 \nmid 30$.

Corollary 2.21. If $a \mid c$ and $b \mid c$, with gcd(a, b) = 1, then $ab \mid c$.

Theorem 2.22. (Euclid's Lemma) If $a \mid bc$, with gcd(a, b) = 1, then $a \mid c$.

Remark 2.23. If a and b are not relatively prime, then the conclusion of Euclid's Lemma may fail to hold. For example, $10 \mid 5.6$ but $10 \nmid 5$ and $10 \nmid 6$.

Theorem 2.24. Let a, b be integers, not both zero. For a positive integer d, d = gcd(a, b) if and only if

- 1. $d \mid a \text{ and } d \mid b$,
- 2. whenever $c \mid a$ and $c \mid b$, then $c \mid d$.

2.3 THE EUCLIDEAN ALGORITHM

Lemma 2.25. If a = qb + r, then gcd(a, b) = gcd(b, r).

The Euclidean Algorithm.

Example 2.26. *Find gcd*(195, 70).

Example 2.27. Find gcd(295, 140) and gcd(12378, 3054).

Theorem 2.28. If k>0, then $gcd(ka, kb) = k \ gcd(a, b)$.

Corollary 2.29. For any integer $k \neq 0$, gcd(ka, kb) = |k|gcd(a, b).

Example 2.30. $gcd(12,30) = 3 \ gcd(4,10) = 3 \cdot 2 \ gcd(2,5) = 6 \cdot 1 = 6.$

Definition 2.31. The **least common multiple** of two nonzero integers a and b, denoted by lcm(a,b), is the positive integer m satisfying

- 1. $a \mid m \text{ and } b \mid m$,
- 2. $a \mid c \text{ and } b \mid c, \text{ with } c>0, \text{ then } m \leq c.$

Example 2.32. lcm(-12, 30) = 60.

Theorem 2.33. For positive integers a and b,

$$gcd(a,b) \cdot lcm(a,b) = ab.$$

Corollary 2.34. Given positive integers a and b, lcm(a,b) = ab if and only if gcd(a,b) = 1.

2.4 THE DIOPHANTINE EQUATION ax + by = c

Definition 2.35. Any equation in one or more unknowns which is to be solved in integers is called **Diophantine equation**.

The linear Diophantine equation in two unknowns is of the form

$$ax + by = c$$
,

where a, b, c are given integers and a, b not both zero.

A solution of this equation is a pair of integers x_0, y_0 which satisfy it.

Example 2.36. The equation 3x + 6y = 18 has solutions

$$3.4 + 6.1 = 18,$$

$$3(-6) + 6.6 = 18$$
,

$$3.10 + 6(-2) = 18.$$

Example 2.37. The equation 4x + 18y = 11 has no solution.

Theorem 2.38. The linear Diophantine equation ax + by = c has a solution if and only if $d \mid c$, where d = gcd(a, b). If x_0, y_0 is any particular solution of this equation, then all other solutions are given by

$$x = x_0 + (b/d)t$$
, $y = y_0 - (a/d)t$

for varying integers t.

Example 2.39. Solve the linear Diophantine equation

$$172x + 20y = 1000.$$

Example 2.40. Solve the following linear Diophantine equations

- 1. 24x + 138y = 18,
- 2. 56x + 72y = 40.

Corollary 2.41. If gcd(a,b) = 1 and if x_0, y_0 is a particular solution of the linear Diophantine equation ax + by = c, then all solutions are given by

$$x = x_0 + bt, \quad y = y_0 - at$$

 $for\ integral\ values\ of\ t.$

3 Primes and their Distribution

Definition 3.1. An integer p>1 is called a **prime number**, or a **prime**, if its only positive divisors are 1 and p. An integer greater than 1 which is not a prime is called **composite**.

Theorem 3.2. If p is a prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Corollary 3.3. If p is a prime and $p|a_1a_2\cdots a_n$, then $p|a_k$ for some k, where $1 \le k \le n$.

Corollary 3.4. If p, q_1, q_2, \dots, q_n are all primes and $p|q_1q_2 \dots q_n$, then $p = q_k$ for some k, where $1 \le k \le n$.

Theorem 3.5 (Fundamental Theorem of Arithmetic). Every positive integer n > 1 is either a prime or a product of primes; this representation is unique, apart from the order in which the factors occur.

Of course, several of the primes that appear in the factorization of a given positive integer may be repeated, as is the case with

$$360 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5.$$

By collecting like primes and replacing them by a single factor, we can rephrase Theorem 3.5 as a corollary.

Corollary 3.6. Any positive integer n > 1 can be written uniquely in a canonical form

$$n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$$

where, for i = 1, 2, ..., r, each k_i is a positive integer and each p_i is a prime, with $p_1 < p_2 < \cdots < p_r$.

Example 3.7.

$$360 = 2^{3} \cdot 3^{2} \cdot 5,$$

$$4725 = 3^{3} \cdot 5^{2} \cdot 7,$$

$$17460 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2}.$$

Prime factorizations provide another means of calculating greatest common divisors. For suppose that p_1, p_2, \dots, p_n are the distinct primes that divide either of a or b. Allowing zero exponents, we can write

$$a = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}, \quad b = p_1^{j_1} p_2^{j_2} \cdots p_n^{j_n}$$

Then

$$gcd(a,b) = p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n}$$

where $r_i = min(k_i, j_i)$, the smaller of the two exponents associated with p_i in the two representations.

Example 3.8.

$$4725 = 2^0 \cdot 3^3 \cdot 5^2 \cdot 7, \quad 17460 = 2^3 \cdot 3^2 \cdot 5 \cdot 7^2$$

and so

$$gcd(4725, 17460) = 2^0 \cdot 3^2 \cdot 5 \cdot 7 = 315.$$

Theorem 3.9 (Pythagoras). The number $\sqrt{2}$ is irrational.

Theorem 3.10 (Euclid). There is an infinite number of primes.

Theorem 3.11. If p_n is the nth prime number, then $p_n \leq 2^{2^{n-1}}$.

Corollary 3.12. For $n \ge 1$, there are at least n + 1 primes less than 2^{2^n} .

Lemma 3.13. The product of two or more integers of the form 4n + 1 is of the same form.

Theorem 3.14. There are an infinite number of primes of the form 4n + 3.

4 The Theory of Congruences

4.1 CARL FRIEDRICH GAUSS

A short background about the German mathematician Carl Friedrich Gauss (1777-1855).

4.2 BASIC PROPERTIES OF CONGRUENCE

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be **congruent modulo** n, symbolized by

$$a \equiv b \pmod{n}$$

if n divides the difference a - b; that is, provided that a - b = kn for some integer k.

When $n \nmid (a - b)$, we say that a **is incongruent to** b **modulo** n, and in this case we write $a \not\equiv b \pmod{n}$.

Example 4.2. To fix the idea, consider n = 7.

- (1) $3 \equiv 24 \pmod{7}$,
- (2) $25 \not\equiv 12 \pmod{7}$.

Theorem 4.3. For arbitrary integers a and b, $a \equiv b \pmod{n}$ if and only if a and b leave the same nonnegative remainder when divided by n.

Theorem 4.4. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following properties hold:

- (1) $a \equiv a \pmod{n}$.
- (2) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.
- (3) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.
- (4) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.
- (5) If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$.
- (6) If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any positive integer k.

Example 4.5. Show that 41 divides $2^{20} - 1$.

Example 4.6. Find the remainder when the sum

$$1! + 2! + 3! + 4! + \cdots + 99! + 100!$$

is divided by 12.

Theorem 4.7. If $ca \equiv cb \pmod{n}$, then $a \equiv b \pmod{n/d}$, where d = gcd(c, n).

Corollary 4.8. If $ca \equiv cb \pmod{n}$ and gcd(c, n) = 1, then $a \equiv b \pmod{n}$.

Corollary 4.9. If $ca \equiv cb \pmod{p}$ and $p \nmid c$, where p is a prime number, then $a \equiv b \pmod{p}$.

4.3 SPECIAL DIVISIBILITY TEST

Given an integer b > 1, any positive integer N can be written uniquely in terms of powers of b as

$$N = a_m b^m + a_{m-1} b^{m-1} + \dots + a_2 b^2 + a_1 b + a_0,$$

where the coefficients a_k can take on the b different values $0, 1, 2, \dots, b-1$. Thus, the number N may be replaced by the simpler symbol

$$N = (a_m a_{m-1} \cdots a_2 a_1 a_0)_h$$

(the right-hand side is not to be interpreted as a product, but only as an abbreviation for N). We call this the **base** b **place value notation for** N.

When the base b = 2, and the resulting system of enumeration is called the **binary number system** (from the Latin **binarius**, two). The fact that when a number is written in the binary system only the integers 0 and 1 can appear as coefficients means that every positive integer is expressible in exactly one way as a sum of distinct powers of 2. Example 4.10. The integer 105 can be written as

$$105 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2 + 1 = 2^6 + 2^5 + 2^3 + 1$$

or, in abbreviated form,

$$105 = (1101001)_2$$

In the other direction, $(1001111)_2$ translates into

$$1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 1 = 79.$$

When b = 10, then it is called the **decimal system** (from the Latin **decem**, ten). For example

$$2023 = 2 \cdot 10^3 + 0 \cdot 10^2 + 2 \cdot 10 + 3.$$

Theorem 4.11. Let $P(x) = \sum_{k=0}^{m} c_k x^k$ be a polynomial function of x with integral coefficients c_k . If $a \equiv b \pmod{n}$, then $P(a) \equiv P(b) \pmod{n}$.

Note 4.12. If P(x) is a polynomial with integral coefficients, we say that a is a solution of the congruence $P(x) \equiv 0 \pmod{n}$ if $P(a) \equiv 0 \pmod{n}$.

Corollary 4.13. If a is a solution of $P(x) \equiv 0 \pmod{n}$ and $a \equiv b \pmod{n}$, then b also is a solution.

Example 4.14. 4 is a solution of $p(x) = x^2 + x + 1 \equiv 0 \pmod{3}$ and $4 \equiv 1 \pmod{3}$, then 1 is also a solution of p(x) because $P(4) \equiv P(1) \equiv 0 \pmod{3}$.

Theorem 4.15. Let $N = a_m 10^m + a_{m-1} 10^{m-1} + \cdots + a_2 10^2 + a_1 10 + a_0$ be the decimal expansion of the positive integer N, $0 \le a_k < 10$, and let $S = a_0 + a_1 + \cdots + a_m$. Then $9 \mid N$ if and only if $9 \mid S$.

Example 4.16. The number 149, 235, 678 is divisible by 9 because

$$1+4+9+2+3+5+6+7+8=45$$

is divisible by 9.

Theorem 4.17. Let $N = a_m 10^m + a_{m-1} 10^{m-1} + \cdots + a_2 10^2 + a_1 10 + a_0$ be the decimal expansion of the positive integer N, $0 \le a_k < 10$, and let $T = a_0 - a_1 + a_2 - \cdots + (-1)^m a_m$. Then $11 \mid N$ if and only if $11 \mid T$.

Example 4.18. The number 1, 571, 724. is divisible by 11 because

$$4-2+7-1+7-5+1=11$$

is divisible by 11.

4.4 LINEAR CONGRUENCES

Definition 4.19. An equation of the form $ax \equiv b \pmod{n}$ is called a **linear congruence**.

An integer x_0 is called a solution of $ax \equiv b \pmod{n}$ if $ax_0 \equiv b \pmod{n}$, that is, $n \mid (ax_0 - b)$.

Theorem 4.20. The linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if $d \mid b$, where $d = \gcd(a, n)$. If $d \mid b$, then it has d mutually incongruent solutions modulo n.

Note that the solution of $ax \equiv b \pmod{n}$ has the form

$$x = x_0 + \frac{n}{d}t$$

for some choice of t.

Among the various integers satisfying the first of these formulas, consider those that occur when t takes on the successive values $t = 0, 1, 2, \dots, d-1$:

$$x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \cdots, x_0 + \frac{(d-1)n}{d}.$$

Corollary 4.21. If gcd(a, n) = 1, then the linear congruence $ax \equiv b \pmod{n}$ has a unique solution modulo n.

Example 4.22. Solve the linear congruence $18x \equiv 30 \pmod{42}$.

Example 4.23. Solve the linear congruence $9x \equiv 21 \pmod{30}$.

Example 4.24. Solve the linear congruence $6x \equiv 15 \pmod{21}$.

Theorem 4.25 (Chinese Remainder Theorem). Let n_1, n_2, \dots, n_r be positive integers such that $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of linear congruences

$$x \equiv a_1 \pmod{n_1}$$

$$x \equiv a_2 \pmod{n_2}$$

$$\vdots$$

$$x \equiv a_r \pmod{n_r}$$

has a simultaneous solution, which is unique modulo the integer $n_1 n_2 \cdots n_r$.

Example 4.26. Solve the system

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \; (mod \; 5)$$

$$x \equiv 2 \pmod{7}$$
.

Example 4.27. Solve the system

$$x \equiv 0 \; (mod \; 3)$$

$$x \equiv 1 \pmod{4}$$

$$x \equiv 9 \pmod{23}$$
.

5 Fermat's Theorem

5.1 FERMAT'S LITTLE THEOREM

Theorem 5.1 (Fermat's Little Theorem). If p is a prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Example 5.2. Take a = 2 and p = 7. Then

Corollary 5.3. If p is a prime, then $a^p \equiv a \pmod{p}$ for any integer a.

Example 5.4. Show that $(a+1)^p \equiv a+1 \pmod{p}$.

Example 5.5. *Show that* $5^{38} \equiv 4 \pmod{11}$.

Lemma 5.6. If p and q are distinct primes such that $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$, then $a^{pq} \equiv a \pmod{pq}$.

Example 5.7. $2^{11} \equiv 2 \pmod{31}$ and $2^{31} \equiv 2 \pmod{11}$. Then $2^{11 \cdot 31} \equiv 2 \pmod{11 \cdot 31}$ or $2^{341} \equiv 2 \pmod{341}$.

Example 5.8. Find the units digit of 3^{100} by the use of Fermat's Theorem.

Definition 5.9. A composite integer n is called **pseudoprime** whenever $n \mid 2^n - 2$.

The smallest four pseudoprimes are 341, 561, 645, and 1105.

Example 5.10. Show that 561 is a pseudoprime.

 $561 = 3 \cdot 11 \cdot 17.$

5.2 WILSON'S THEOREM

Theorem 5.11 (Wilson). If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Example 5.12. Apply Wilson's Theorem when p = 17.

Solution: It is possible to divide the integers $2, 3, \dots, 15$ into (p-3)/2 = 7 pairs each of whose products is congruent to 1 modulo 17. To write these congruences out explicity:

$$2 \cdot 9 \equiv 1 \pmod{17},$$

 $3 \cdot 6 \equiv 1 \pmod{17},$
 $4 \cdot 13 \equiv 1 \pmod{17},$
 $5 \cdot 7 \equiv 1 \pmod{17},$
 $10 \cdot 12 \equiv 1 \pmod{17},$
 $8 \cdot 15 \equiv 1 \pmod{17},$
 $11 \cdot 14 \equiv 1 \pmod{17}.$

Multiplying these congruences gives the result

$$15! = (2 \cdot 9)(3 \cdot 6)(4 \cdot 13)(5 \cdot 7)(10 \cdot 12)(8 \cdot 15)(11 \cdot 14) \equiv 1 \pmod{17}$$

and so

$$16! \equiv 16 \equiv -1 \pmod{17}$$
.

Theorem 5.13. The quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime, has a solution if and only if $p \equiv 1 \pmod{4}$.

p must be of the form p=4k+1 and [(p-1)/2]! satisfies the quadratic congruence $x^2+1\equiv 0\ (mod\ p)$.

Example 5.14. *Take* p = 13.

Example 5.15. Show that $x^2 + 1 \equiv 0 \pmod{3}$ has no solution.

6 Number-Theoretic Functions

6.1 The Functions τ and σ

Definition 6.1. Given a positive integer n, let $\tau(n)$ denote the number of positive divisors of n and $\sigma(n)$ denote the sum of these divisors.

Example 6.2. Consider n = 12. Since 12 has the positive divisors 1, 2, 3, 4, 6, 12, we find that

$$\tau(12) = 6$$
 and $\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$.

For the first few integers,

$$\tau(1) = 1$$
, $\tau(2) = 2$, $\tau(3) = 2$, $\tau(4) = 3$, $\tau(5) = 2$, $\tau(6) = 4$, ...

and

$$\sigma(1) = 1$$
, $\sigma(2) = 3$, $\sigma(3) = 4$, $\sigma(4) = 7$, $\sigma(5) = 6$, $\sigma(6) = 12$, \cdots .

Remark 6.3.

It is not difficult to see that

- 1. $\tau(n) = 2$ if and only if n is a prime number.
- 2. $\sigma(n) = n + 1$ if and only if n is a prime number.

Theorem 6.4. If $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ is the prime factorization of n > 1, then the positive divisors of n are precisely those integers d of the form

$$n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

where $0 \le a_i \le k_i \ (i = 1, 2, \dots, r)$.

Theorem 6.5. If $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ is the prime factorization of n > 1, then

(a)
$$\tau(n) = (k_1 + 1)(k_2 + 1) \cdots (k_r + 1)$$
, and

(b)
$$\sigma(n) = \frac{p_1^{k_1+1}-1}{p_1-1} \frac{p_2^{k_2+1}-1}{p_2-1} \cdots \frac{p_r^{k_r+1}-1}{p_r-1}.$$

Example 6.6. The number $180 = 2^2 \cdot 3^2 \cdot 5 \text{ has}$

$$\tau(180) = (2+1)(2+1)(1+1) = 18$$

positive divisors. The sum of these integers is

$$\sigma(n) = \frac{2^3 - 1}{2 - 1} \frac{3^3 - 1}{3 - 1} \frac{5^2 - 1}{5 - 1} = 7 \cdot 13 \cdot 6 = 546.$$

Example 6.7. Find $\tau(18)$ and $\sigma(18)$.

Example 6.8. Find $\tau(1575)$ and $\sigma(1575)$, where $1575 = 3^2 \cdot 5^2 \cdot 7$.

Remark 6.9.

$$\tau(2 \cdot 10) = \tau(20) = 6 \neq 2 \cdot 4 = \tau(2) \cdot \tau(10).$$

At the same time,

$$\sigma(2 \cdot 10) = \sigma(20) = 42 \neq 3 \cdot 18 = \sigma(2) \cdot \sigma(10).$$

These calculations bring out the nasty fact that, in general, it need not be true that

$$\tau(mn) = \tau(m)\tau(n)$$
 and $\sigma(mn) = \sigma(m)\sigma(n)$.

Definition 6.10. A number-theoretic function f is said to be **multiplicative** if

$$f(mn) = f(m)f(n)$$

whenever gcd(m, n) = 1.

Remark 6.11. If f is multiplicative and n_1, n_2, \dots, n_r are positive integers that are pairwise relatively prime, then

$$f(n_1 n_2 \cdots n_r) = f(n_1) f(n_2) \cdots f(n_r).$$

Remark 6.12.

Multiplicative functions have one big advantage for us: they are completely determined once their values at prime powers are known. Indeed, if n>1 is a given positive integer, then we can write $n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$ in canonical form; since the $p_i^{k_i}$ are relatively prime in pairs, the multiplicative property ensures that

$$f(n) = f(p_1^{k_1}) f(p_2^{k_2}) \cdots f(p_r^{k_r}).$$

If f is a multiplicative function that does not vanish identically, then there exists an integer n such that $f(n) \neq 0$. But

$$f(n) = f(n \cdot 1) = f(n)f(1).$$

Being nonzero, f(n) may be canceled from both sides of this equation to give f(1) = 1.

Theorem 6.13. The functions τ and σ are both multiplicative functions.

Definition 6.14. A positive integer n is said to be

- 1. a deficient number if $\sigma(n) < 2n$,
- 2. an abundant number if $\sigma(n) > 2n$,
- 3. a perfect number if $\sigma(n) = 2n$.

Example 6.15.

6.2 The Möbius μ -function.

Definition 6.16. For a positive integer n, define μ by the rules

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } p^2 \mid n \text{ for some prime } p\\ (-1)^r & \text{if } n = p_1 p_2 \cdots p_r, \text{where } p_i \text{ are distinct primes} \end{cases}$$

The first few values of μ are

$$\mu(1) = 1, \ \mu(2) = -1, \ \mu(3) = -1, \ \mu(4) = 0, \ \mu(5) = -1, \ \mu(6) = 1, \cdots$$

If p is a prime number, it is clear that $\mu(p) = -1$; also, $\mu(p^k) = 0$ for $k \geq 2$.

Theorem 6.17. The function μ is a multiplicative function.

Definition 6.18. The **Liouville** λ -function is defined by

$$\lambda(n) = \begin{cases} 1 & if \ n = 1\\ (-1)^{k_1 + k_2 + \dots + k_r} & if \ n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}. \end{cases}$$

Example 6.19.
$$\lambda(360) = \lambda(2^3 \cdot 3^2 \cdot 5) = (-1)^{3+2+l} = (-1)^6 = 1.$$

Theorem 6.20. The function λ is a multiplicative function.

6.3 The Greatest Integer Function

Definition 6.21. For an arbitrary real number x, we denote by [x] the largest integer less than or equal to x; that is, [x] is the unique integer satisfying $x-1 < [x] \le x$.

Example 6.22. By way of illustration, [] assumes the particular values

$$[-3/2] = -2$$
, $[\sqrt{2}] = 1$, $[1/3] = 0$, $[\pi] = 3$, $[-\pi] = -4$.

Note 6.23. From the Definition 6.21, we observe the following

- 1. [x] = x if and only if x is an integer.
- 2. Any real number x can be written as $x = [x] + \theta$ for a suitable choice of θ , with $0 \le \theta < 1$.

We now plan to investigate the question of how many times a particular prime p appears in n!. For instance, if p=3 and n=9, then

$$9! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9$$
$$= 2^7 \cdot 3^4 \cdot 5 \cdot 7,$$

so that the exact power of 3 that divides 9! is 4.

Theorem 6.24. If n is a positive integer and p a prime, then the exponent of the highest power of p that divides n! is

$$\sum_{k=1}^{\infty} \left[\frac{n}{p^k}\right].$$

(This is not an infinite series, since $[n/p^k] = 0$ for $p^k > n$).

Example 6.25. Find the number of zeros with which the decimal representation of 50! terminates.

Theorem 6.26. If n and r are positive integers with $1 \le r < n$, then the binomial coefficient

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

is also an integer.

Corollary 6.27. For a positive integer r, the product of any r consecutive positive integers is divisible by r!.

Example 6.28. (n-1)n(n+1) is divisible by 3! = 6. That is, $n^3 - n$ is divisible by 6.

7 Euler's Generalization of Fermat's Theorem

7.1 LEONHARD EULER

A short background about the Swiss mathematician Leonhard Euler (1707-1783).

7.2 EULER'S PHI-FUNCTION

Definition 7.1. For $n \ge 1$, let $\phi(n)$ denote the number of positive integers not exceeding n that are relatively prime to n.

Example 7.2. To illustrate the definition,

- 1. $\phi(9) = 6$, and
- 2. $\phi(15) = 8$.

For the first few positive integers,

$$\phi(1) = 1$$
, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$, $\phi(5) = 4$, $\phi(6) = 2$, $\phi(7) = 6$, \cdots .

Remark 7.3. $\phi(n) = n - 1$ if and only if n is prime.

Theorem 7.4. If p is a prime and k > 0, then

$$\phi(p^k) = p^k - p^{k-1} = p^k (1 - \frac{1}{p}).$$

Example 7.5. $\phi(16) = \phi(2^4) = 2^4 - 2^3 = 8$.

Lemma 7.6. Given integers a, b, c, gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and gcd(a, c) = 1.

Theorem 7.7. The function ϕ is a multiplicative function.

Theorem 7.8. If the integer n > 1 has the prime factorization $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, then

$$\phi(n) = (p_1^{k_1} - p_1^{k_1 - 1})(p_2^{k_2} - p_2^{k_2 - 1}) \cdots (p_r^{k_r} - p_r^{k_r - 1})$$
$$= n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \cdots (1 - \frac{1}{p_r}).$$

Example 7.9.

To calculate $\phi(360)$. The prime-power decomposition of 360 is $2^3 \cdot 3^2 \cdot 5$. By Theorem 7.8,

$$\phi(360) = 360(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{5})$$
$$= 360 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5} = 96.$$

Theorem 7.10. For n > 2, $\phi(n)$ is an even integer.

7.3 EULER'S THEOREM

Lemma 7.11. Let n > 1 and gcd(a, n) = 1. If $a_1, a_2, \dots, a_{\phi(n)}$ are the positive integers less than n and relatively prime to n, then

$$aa_1, aa_2, \cdots, aa_{\phi(n)}$$

are congruent modulo n to $a_1, a_2, \dots, a_{\phi(n)}$ in some order.

Theorem 7.12 (Euler). If $n \ge 1$ and gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Example 7.13. To illustrate the proof, take n = 9 and a = -4. Then

Remark 7.14. If p is a prime, then $\phi(p) = p-1$; hence, whenever gcd(a, p) = 1, we get

 $a^{p-1} \equiv a^{\phi(n)} \equiv 1 \; (mod \; n)$

and so we have the following corollary.

Corollary 7.15 (Fermat). If p is a prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{n}$.

Example 7.16. Find the last two digits in the decimal representation of 3^{203} .