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1. Introduction

1.1. Symmetry of roots of polynomials. Galois theory arose out of at-
tempts to understand solutions to polynomial equaltions. The underlying
idea of Galois theory – expressed not very precisely – is that roots of poly-
nomials possess certain natural symmetries.

This can be illustrated by the following example. Consider the following
polynomial in a variable X:

f = X5 − 2
√

2X4 − 14X3 + (−6 + 14
√

2)X + (49 + 12
√

2)X + 42.

The coefficients of f are real. As f has degree 5, it is not surprising that f
has 5 complex roots, namely,

−2, 1 + 2i, 1− 2i,
√

2 + 3i,
√

2− 3i.

We see that the set of roots is symmetric with respect to the horizontal axis.
That is, if z ∈ C is a root of f , then its complex conjugate z̄ is a root of f .

In fact, this statement is true not just for the polynomial f above, but for
any polynomial g with real coefficients. How can we prove this? We have

g = anX
n + an−1X

n−1 + · · ·+ a1X + a0, where a0, . . . , an ∈ R.
Recall the following properties of complex conjugation: z + w = z + w and
zw = zw for all z, w ∈ C. We have

g(z) = anzn + · · ·+ a1z + a0

= ānz̄
n + · · ·+ ā1z̄ + ā0

= anz̄
n + · · ·+ ā1 + ā0 = g(z),

as an, . . . , a0 ∈ R. Hence, if g(z) = 0, then g(z̄) = 0, as claimed.
Let us look at the above proof carefully. Consider the complex conjugation

map α : C → C, α(z) = z̄. Our argument uses only the following two facts
about α:

(i) α is a field homomorphism (that is, α(z + w) = α(z) + α(w) and
α(zw) = α(z)α(w) for all z, w ∈ C;

(ii) α(r) = r for every r ∈ R.

It turns out that there are only two non-zero maps satisfying these con-
ditions: the complex conjugation α and the identity map idC given by
idC(z) = z. This is mainly due to the fact that R is “large”: it is very
“difficult” for a homomorphism to satisfy condition (ii), i.e. to fix all real
numbers. If R is replaced by a smaller field, for example, by Q, we get many
more symmetries and hence a much richer theory, as we will see. Indeed, the
group of symmetries of the roots of a polynomial with rational coefficients
may be arbitrarily large, depending on the polynomial.
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Such a group is called a Galois group and is the main object of study in
this course. (A formal definition will be given later.)

Remark. Whereas the above symmetry of the roots of f is easy to visualise
pictorially, this will not be the case in general. Instead of pictures, we will
need to use intuition coming mainly from Linear Algebra.

We will begin by introducing the so-called field extensions and looking at
ways to associate a field extension with a polynomial. This is due to the fact
that for many purposes it is much more convenient to look at symmetries of
field extensions rather than symmetries of roots of polynomials.

1.2. Algebraic numbers. Our approach to numbers will be quite different
to that used, say, in Analysis. Many (or most) of the fields considered in
this course will lie inside the field Q of algebraic numbers, which is defined
below. To motivate this definition, let us consider how different number
systems arose. The natural numbers

N = {1, 2, 3, . . .}

are the most straightforward: they are used for counting. One can add
and multiply natural numbers, but one cannot always subtract: that is, the
equation x + a = b does not always have a solution for a, b ∈ N. To allow
subtraction in all cases, one has to extend N to

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Now one can add, subtract and multiply. But one cannot always divide: the
equation

(1.1) ax+ b = 0

does not necessarily have a solution for a, b ∈ Z. In order to allow division
in all cases, one has to “add” all solutions to (1.1), i.e. to extend Z to the
field Q of rational numbers.

When we consider further extension, we are faced with a choice. The
rational numbers are not very convenient for the purposes of Analysis and
many applications to Physics. To this end, one defines the real numbers R
by “completing” Q. As a result, every Cauchy sequence in R converges and
the Intermediate Value Theorem holds; these and other facts make R very
suitable, say, for modelling the space we live in.

In order to expand Q to R, one has to use not just the four arithmetic
operations but also the fact that we are able to compare rational numbers,
i.e. the usual order <. Indeed, it is impossible to define convergence of
sequences without comparing numbers.



4 ANTON EVSEEV

In Algebra and Number Theory, one doesn’t necessarily use the order <:
in this course, we will never compare two elements of the field. Instead,
we consider another natural way to extend Q. We can generalise the equa-
tion 1.1 to

anx
n + an−1x

n−1 + · · ·+ a0 = 0,

where a0, . . . , an ∈ Q and not all of them are zero. Complex solutions to
equations of this form are called algebraic numbers. We will see that they
form a field, called Q̄. We have

N ⊂ Z ⊂ Q ⊂ Q̄ ⊂ C.
An advantage of this approach is that much of what we will do works over
any field. Indeed, many applications of Galois Theory concern fields that
are very different from Q. However, most of the examples in this course will
involve Q and its extensions.




