2. Field extensions

Recall the concept of a field:
Definition. A field is a commutative ring F such that for every $a \in F \backslash\{0\}$ there exists $b \in F$ satisfying $a b=1$. In this situation, we write $b=a^{-1}$.

Examples. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{p}$ (the finite field with p elements, where p is a prime).
Definition. Let L be a field and K be a subfield of L. Then we say that L is an extension of K and that L / K is a field extension.

Examples. $\mathbb{C} / \mathbb{R} ; \mathbb{C} / \mathbb{Q} ; \mathbb{F} / \mathbb{Q}$, where $F=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$.
Let us prove that F is a subfield of \mathbb{R}. If $u=a+b \sqrt{2} \in F$ and $v=$ $c+d \sqrt{2} \in F$ (with $a, b, c, d \in \mathbb{Q}$), then

$$
u-v=(a-c)+(b-d) \sqrt{2} \in F
$$

and

$$
u v=a c+a d \sqrt{2}+b c \sqrt{2}+2 b d=(a c+2 b d)+(a d+b c) \sqrt{2} \in F .
$$

If $w=a+b \sqrt{2} \in F(a, b \in \mathbb{Q})$ and $w \neq 0$, then

$$
w^{-1}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2} \in F .
$$

Adding elements to a field

Lemma 2.1. Let L be a field, and let $\left\{F_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of subfields of L. Then $\cap_{\lambda \in \Lambda} F_{\lambda}$ is also a subfield of L.

Proof. Let $F=\cap_{\lambda \in \Lambda} F_{\lambda}$. Since $0,1 \in F_{\lambda}$ for all $\lambda \in \Lambda$, we have $0,1 \in F$. Let $a, b \in F$. Then $a, b \in F_{\lambda}$ for all $\lambda \in \Lambda$, so $a-b \in F_{\lambda}$, and $a b \in F_{\lambda}$ for all $\lambda \in \Lambda$. Thus, $a-b \in F$ and $a b \in F$. Let $c \in F \backslash\{0\}$. Then $c^{-1} \in F_{\lambda}$ for all $\lambda \in \Lambda$, whence $c^{-1} \in F$. Hence, F is a subfield of L.

Definition. Let L / K be a field extension, and let $A \subseteq L$ be a subset. We denote by $K(A)$ the intersection of all subfields of L that contain both K and A. We say that $K(A)$ is the subfield of L generated by A over K (alternatively, generated by $K \cup A$).

Note that $K(A)$ is indeed a subfield by Lemma 2.1.
If $A=\left\{a_{1}, \ldots, a_{n}\right\}$, we write $K\left(a_{1}, \ldots, a_{n}\right)$ for $K(A)$.

Proposition 2.2. Let L / K be a field extension. Let $A \subseteq L$ be a subset. If $M \subseteq L$ is a subfield containing $K \cup A$, then $K(A) \subseteq M$.

Proof. Obvious from the definition.
Remark. This means that $K(A)$ is the smallest subfield of L containing $K \cup A$, thus giving an alternative description of $K(A)$. (When we say that M is the smallest subfield containing $K \cup A$, we mean that M contains $K \cup A$ and that any other subfield M^{\prime} that contains $K \cup A$ contains M.)

Example. We claim that

$$
\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} .
$$

Indeed, let F be the RHS. We have previously proved that F is a field. Certainly, F contains \mathbb{Q} and $\sqrt{2}$. So, by Proposition $2.2, F \supseteq \mathbb{Q}(\sqrt{2})$. On the other hand, since $\mathbb{Q}(\sqrt{2})$ is closed under addition and multiplication, we have $a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ for all $a, b \in \mathbb{Q}$. So $F \subseteq \mathbb{Q}(\sqrt{2})$. Thus, $F=\mathbb{Q}(\sqrt{2})$ as claimed.

Proposition 2.3. Let $K \subseteq L$ be fields and $A, B \subseteq L$. Then
(i) $K(A \cup B)=K(A)(B)$;
(ii) Suppose that L^{\prime} is a subfield of L containing both K and A. Then $K(A)$ is the same, whether defined as a subfield of L or as a subfield of L^{\prime}.

Proof. Exercise.
Proposition 2.4. Let $K \subseteq L$ be fields and A be a subset of L. Then $K(A)$ is the set of all elements of L that can be obtained from elements of $K \cup A$ by repeatedly applying the operations of addition, subtraction, multiplication and division.

Proof. Omitted (exercise): this proposition will not be used directly.

Degree of an extension

If L / K is a field extension, then L may be viewed as a vector space over K.

Definition. A field extenstion L / K is said to be finite if L is a finitedimensional vector space over K. In this case, the dimension of L as a K-vector space is called the degree of the extension L / K and is denoted by [$L: K]$.

Examples.

Extension	Degree	Basis
$\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$	2	$\{1, \sqrt{2}\}$
\mathbb{R} / \mathbb{Q}	∞	
\mathbb{C} / \mathbb{R}	2	$\{1, i\}$
$\mathbb{Q}(i) / \mathbb{Q}, i=\sqrt{-1}$	2	$\{1, i\}$

Theorem 2.5 (Tower Law). Suppose that $K \subseteq M \subseteq L$ are fields.
(i) The extension L / K is finite if and only if both L / M and M / K are finite.
(ii) If L / K is finite, then

$$
[L: K]=[L: M][M: K] .
$$

Proof. First, suppose that L / K is finite. Then M / K is finite because a subspace of a finite-dimensional vector space is finite. Further, let $\left\{v_{1}, \ldots, v_{s}\right\}$ be a finite set spanning L as a vector space over K. It is clear that $\left\{v_{1}, \ldots, v_{s}\right\}$ also spans L as a vector space over M, which implies that L / M is finite.

It remains to prove the following: if M / K and L / M are finite, then L / K is finite and $[L: K]=[L: M][M: K]$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of L over M and $\left\{f_{1}, \ldots, f_{m}\right\}$ be a basis of M over K. Then $[L: M]=n$ and $[M: K]=m$. Let

$$
T=\left\{e_{i} f_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}
$$

It suffices to prove that T is a basis of L over K, for then L / K is finite and

$$
[M: K]=m n=[M: L][L: K] .
$$

First, we will prove that T spans L over K. Let $u \in L$. Then

$$
u=\sum_{i=1}^{n} a_{i} e_{i} \quad \text { for some } a_{1}, \ldots, a_{n} \in M
$$

since $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of L over M. Each a_{i} can be expressed in the form

$$
a_{i}=\sum_{j=1}^{m} b_{i j} f_{j} \quad \text { where } b_{i j} \in K
$$

because $\left\{f_{1}, \ldots, f_{m}\right\}$ is a basis of M over K. Thus,

$$
u=\sum_{i} a_{i} e_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{m} b_{i j} f_{j}\right) e_{i}=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i j}\left(f_{j} e_{i}\right) .
$$

So T spans L over K.

Secondly, let us prove that T is linearly independent over K. Suppose that

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} e_{i} f_{j}=0 \quad \text { where } c_{i j} \in K \text { for all } i, j .
$$

For each i, consider

$$
w_{i}=\sum_{j=1}^{m} c_{i j} f_{j} \in L
$$

Then

$$
\sum_{i=1}^{n} w_{i} e_{i}=\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} e_{i} f_{j}=0
$$

Since e_{1}, \ldots, e_{n} are linearly independent over M, we deduce that $w_{1}=\cdots=$ $w_{n}=0$. That is,

$$
\sum_{j=1}^{m} c_{i j} f_{j}=0 \quad \text { for each } i
$$

But since f_{1}, \ldots, f_{m} are linearly independent over K, we have $c_{i j}=0$ for all i, j, as required.

Example. Consider $L=\mathbb{Q}(\sqrt{2}, i)$. Let $F=\mathbb{Q}(\sqrt{2})$, so $L=F(i)$. First, one can prove that

$$
L=\{c+d i \mid c, d \in F\}
$$

in the same way as in the previous example; that is, $1, i$ span L over F. Thus, $[L: F]=2$ (as $1, i$ are linearly independent over F and even over \mathbb{R}). By Tower Law,

$$
[L: \mathbb{Q}]=[L: F][F: \mathbb{Q}]=2 \cdot 2=4
$$

Moreover, by the proof of Tower Law, $\{1, \sqrt{2}, i, i \sqrt{2}\}$ is a basis of L over \mathbb{Q}.

