2. FIELD EXTENSIONS
Recall the concept of a field:

Definition. A field is a commutative ring F' such that for every a € F'\ {0}
there exists b € F satisfying ab = 1. In this situation, we write b = o

Examples. Q, R, C, F, (the finite field with p elements, where p is a prime).

Definition. Let L be a field and K be a subfield of L. Then we say that L
is an extension of K and that L/K is a field extension.

Examples. C/R; C/Q; F/Q, where F = {a +bv2 | a,b € Q}.
Let us prove that F is a subfield of R. If u = a4+ bv/2 € F and v =
c+dv2 e F (with a,b,¢,d € Q), then

u—v=(a—c)+(b-dV2€F
and
wv = ac + adv'2 + bev/'2 4 2bd = (ac + 2bd) + (ad + be)V2 € F.
Ifw=a+bv2eF (abe Q) and w# 0, then

— b2 b
a_a-b2__ a V2€eF

v T a2 =202 2 -2 a2 - 2b2

ADDING ELEMENTS TO A FIELD

Lemma 2.1. Let L be a field, and let { F\} ea be a family of subfields of L.
Then NxeaF is also a subfield of L.

Proof. Let ' = NyeaF)\. Since 0,1 € F), for all A € A, we have 0,1 € F. Let
a,b € F. Then a,b € F), for all A € A, so a —b € Fy, and ab € F) for all
A€A. Thus,a—be Fandab€ F. Let c € F\ {0}. Then ¢! € F), for all
A € A, whence ¢ F. Hence, F is a subfield of L. O

Definition. Let L/K be a field extension, and let A C L be a subset.
We denote by K (A) the intersection of all subfields of L that contain both
K and A. We say that K(A) is the subfield of L generated by A over K
(alternatively, generated by K U A).

Note that K(A) is indeed a subfield by Lemma 2.1.
If A={ay,...,a,}, we write K(ay,...,a,) for K(A).
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Proposition 2.2. Let L/K be a field extension. Let A C L be a subset. If
M C L is a subfield containing K U A, then K(A) C M.

Proof. Obvious from the definition. O

Remark. This means that K(A) is the smallest subfield of L containing
K U A, thus giving an alternative description of K(A). (When we say that
M is the smallest subfield containing K U A, we mean that M contains K UA
and that any other subfield M’ that contains K U A contains M)

Example. We claim that
Q(V2) = {a+bvV2]|a,becQ}.

Indeed, let F' be the RHS. We have previously proved that F' is a field.
Certainly, F' contains Q and v/2. So, by Proposition 2.2, ' O Q(v/2). On
the other hand, since Q(\/§) is closed under addition and multiplication, we
have a + bv/2 € Q(v/2) for all a,b € Q. So F C Q(v/2). Thus, F = Q(v/2)

as claimed.

Proposition 2.3. Let K C L be fields and A, B C L. Then

(1) K(AUB) = K(A)(B);
(i1) Suppose that L' is a subfield of L containing both K and A. Then K(A)
is the same, whether defined as a subfield of L or as a subfield of L.

Proof. Exercise. O

Proposition 2.4. Let K C L be fields and A be a subset of L. Then K(A)
is the set of all elements of L that can be obtained from elements of K U A
by repeatedly applying the operations of addition, subtraction, multiplication
and division.

Proof. Omitted (exercise): this proposition will not be used directly. O

DEGREE OF AN EXTENSION

If L/K is a field extension, then L may be viewed as a vector space over
K.

Definition. A field extenstion L/K is said to be finite if L is a finite-
dimensional vector space over K. In this case, the dimension of L as a

K-vector space is called the degree of the extension L/K and is denoted by
[L: K].



Examples.
Extension Degree  Basis
Q(v2)/Q 2 {1v2}
R/Q 00
C/R 2 {1,4}

Theorem 2.5 (Tower Law). Suppose that K C M C L are fields.
(i) The extension L/K is finite if and only if both L/M and M/K are

finite.
(i) If L/ K is finite, then
[L: K]=[L:M|[M :K].

Proof. First, suppose that L/K is finite. Then M /K is finite because a sub-
space of a finite-dimensional vector space is finite. Further, let {vy, ..., vs}
be a finite set spanning L as a vector space over K. It is clear that
{v1,...,vs} also spans L as a vector space over M, which implies that L/M
is finite.

It remains to prove the following: if M/K and L/M are finite, then L/K
is finite and [L : K] = [L : M][M : K|. Let {ey,...,e,} be a basis of L
over M and {fi,..., fm} be a basis of M over K. Then [L : M] = n and
[M : K] =m. Let

T={ef;|1<i<n, 1<j<m}
It suffices to prove that T is a basis of L over K, for then L/K is finite and
M : K|=mn=[M: L|[L:K].
First, we will prove that T' spans L over K. Let u € L. Then

n
u = E a;e; for some aq,...,a, € M
i=1
since {ey,...,e,} is a basis of L over M. Each a; can be expressed in the
form

a; = Z bijfj where bij e K
j=1

because {f1,..., fm} is a basis of M over K. Thus,

m

u = Zaiei = Z (Z bijfj) € = Z Zbij(fjei>-

i=1 i=1 j=1

So T spans L over K.



Secondly, let us prove that 7' is linearly independent over K. Suppose
that

n m
Z Zcijeifj =0 where ¢;; € K for all 7, 5.
i=1 j=1
For each i, consider

m
w; = Zcijfj c L.
j=1

Then
n n m
S = 303 ey =0
i=1 i=1 j=1
Since eq, ..., e, are linearly independent over M, we deduce that w; = --- =

w, = 0. That is,
Z cijf; =0  for each 7.
j=1

But since fi, ..., fn are linearly independent over K, we have ¢;; = 0 for all
1,7, as required. [

Example. Consider L = Q(v/2,7). Let ' = Q(v/2), so L = F(i). First,
one can prove that
L={c+di|cdeF}
in the same way as in the previous example; that is, 1,7 span L over F.
Thus, [L : F| =2 (as 1,4 are linearly independent over F' and even over R).
By Tower Law,
[L:Q]=[L:F][F:Q=2-2=4.

Moreover, by the proof of Tower Law, {1,v/2,4,iv/2} is a basis of L over Q.



