
2. Field extensions

Recall the concept of a field:

Definition. A field is a commutative ring F such that for every a ∈ F \{0}
there exists b ∈ F satisfying ab = 1. In this situation, we write b = a−1.

Examples. Q, R, C, Fp (the finite field with p elements, where p is a prime).

Definition. Let L be a field and K be a subfield of L. Then we say that L
is an extension of K and that L/K is a field extension.

Examples. C/R; C/Q; F/Q, where F = {a+ b
√

2 | a, b ∈ Q}.
Let us prove that F is a subfield of R. If u = a + b

√
2 ∈ F and v =

c+ d
√

2 ∈ F (with a, b, c, d ∈ Q), then

u− v = (a− c) + (b− d)
√

2 ∈ F

and

uv = ac+ ad
√

2 + bc
√

2 + 2bd = (ac+ 2bd) + (ad+ bc)
√

2 ∈ F.

If w = e+ f
√

2 ∈ F (e, f ∈ Q) and w 6= 0, then

w−1 =
a− b

√
2

a2 + 2b2
=

a

a2 + 2b2
− b

a2 + 2b2

√
2 ∈ F.

Adding elements to a field

Lemma 2.1. Let L be a field, and let {Fλ}λ∈Λ be a family of subfields of L.
Then ∩λ∈ΛFλ is also a subfield of L.

Proof. Let F = ∩λ∈ΛFλ. Since 0, 1 ∈ Fλ for all λ ∈ Λ, we have 0, 1 ∈ F . Let
a, b ∈ F . Then a, b ∈ Fλ for all λ ∈ Λ, so a − b ∈ Fλ, and ab ∈ Fλ for all
λ ∈ Λ. Thus, a− b ∈ F and ab ∈ F . Let c ∈ F \ {0}. Then c−1 ∈ Fλ for all
λ ∈ Λ, whence c ∈ F . Hence, F is a subfield of L. �

Definition. Let L/K be a field extension, and let A ⊆ L be a subset.
We denote by K(A) the intersection of all subfields of L that contain both
K and A. We say that K(A) is the subfield of L generated by A over K
(alternatively, generated by K ∪ A).

Note that K(A) is indeed a subfield by Lemma 2.1.
If A = {a1, . . . , an}, we write K(a1, . . . , an) for K(A).
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Proposition 2.2. Let L/K be a field extension. Let A ⊆ L be a subset. If
M ⊆ L is a subfield containing K ∪ A, then K(A) ⊆M .

Proof. Obvious from the definition. �

Remark. This means that K(A) is the smallest subfield of L containing
K ∪ A, thus giving an alternative description of K(A). (When we say that
M is the smallest subfield containing K∪A, we mean that M contains K∪A
and that any other subfield M ′ that contains K ∪ A contains M .)

Example. We claim that

Q(
√

2) = {a+ b
√

2 | a, b ∈ Q}.

Indeed, let F be the RHS. We have previously proved that F is a field.
Certainly, F contains Q and

√
2. So, by Proposition 2.2, F ⊇ Q(

√
2). On

the other hand, since Q(
√

2) is closed under addition and multiplication, we
have a + b

√
2 ∈ Q(

√
2) for all a, b ∈ Q. So F ⊆ Q(

√
2). Thus, F = Q(

√
2)

as claimed.

Proposition 2.3. Let K ⊆ L be fields and A,B ⊆ L. Then

(i) K(A ∪B) = K(A)(B);
(ii) Suppose that L′ is a subfield of L containing both K and A. Then K(A)

is the same, whether defined as a subfield of L or as a subfield of L′.

Proof. Exercise. �

Proposition 2.4. Let K ⊆ L be fields and A be a subset of L. Then K(A)
is the set of all elements of L that can be obtained from elements of K ∪ A
by repeatedly applying the operations of addition, subtraction, multiplication
and division.

Proof. Omitted (exercise): this proposition will not be used directly. �

Degree of an extension

If L/K is a field extension, then L may be viewed as a vector space over
K.

Definition. A field extenstion L/K is said to be finite if L is a finite-
dimensional vector space over K. In this case, the dimension of L as a
K-vector space is called the degree of the extension L/K and is denoted by
[L : K].
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Examples.
Extension Degree Basis

Q(
√

2)/Q 2 {1,
√

2}
R/Q ∞
C/R 2 {1, i}

Q(i)/Q, i =
√
−1 2 {1, i}

Theorem 2.5 (Tower Law). Suppose that K ⊆M ⊆ L are fields.

(i) The extension L/K is finite if and only if both L/M and M/K are
finite.

(ii) If L/K is finite, then

[L : K] = [L : M ][M : K].

Proof. First, suppose that L/K is finite. Then M/K is finite because a sub-
space of a finite-dimensional vector space is finite. Further, let {v1, . . . , vs}
be a finite set spanning L as a vector space over K. It is clear that
{v1, . . . , vs} also spans L as a vector space over M , which implies that L/M
is finite.

It remains to prove the following: if M/K and L/M are finite, then L/K
is finite and [L : K] = [L : M ][M : K]. Let {e1, . . . , en} be a basis of L
over M and {f1, . . . , fm} be a basis of M over K. Then [L : M ] = n and
[M : K] = m. Let

T = {eifj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
It suffices to prove that T is a basis of L over K, for then L/K is finite and

[M : K] = mn = [M : L][L : K].

First, we will prove that T spans L over K. Let u ∈ L. Then

u =
n∑
i=1

aiei for some a1, . . . , an ∈M

since {e1, . . . , en} is a basis of L over M . Each ai can be expressed in the
form

ai =
m∑
j=1

bijfj where bij ∈ K

because {f1, . . . , fm} is a basis of M over K. Thus,

u =
∑
i

aiei =
n∑
i=1

(
m∑
j=1

bijfj

)
ei =

n∑
i=1

m∑
j=1

bij(fjei).

So T spans L over K.
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Secondly, let us prove that T is linearly independent over K. Suppose
that

n∑
i=1

m∑
j=1

cijeifj = 0 where cij ∈ K for all i, j.

For each i, consider

wi =
m∑
j=1

cijfj ∈ L.

Then
n∑
i=1

wiei =
n∑
i=1

m∑
j=1

cijeifj = 0.

Since e1, . . . , en are linearly independent over M , we deduce that w1 = · · · =
wn = 0. That is,

m∑
j=1

cijfj = 0 for each i.

But since f1, . . . , fm are linearly independent over K, we have cij = 0 for all
i, j, as required. �

Example. Consider L = Q(
√

2, i). Let F = Q(
√

2), so L = F (i). First,
one can prove that

L = {c+ di | c, d ∈ F}
in the same way as in the previous example; that is, 1, i span L over F .
Thus, [L : F ] = 2 (as 1, i are linearly independent over F and even over R).
By Tower Law,

[L : Q] = [L : F ][F : Q] = 2 · 2 = 4.

Moreover, by the proof of Tower Law, {1,
√

2, i, i
√

2} is a basis of L over Q.


