2. Field extensions

Recall the concept of a field:

Definition. A *field* is a commutative ring F such that for every $a \in F \setminus \{0\}$ there exists $b \in F$ satisfying ab = 1. In this situation, we write $b = a^{-1}$.

Examples. \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_p (the finite field with p elements, where p is a prime).

Definition. Let L be a field and K be a subfield of L. Then we say that L is an extension of K and that L/K is a field extension.

Examples. \mathbb{C}/\mathbb{R} ; \mathbb{C}/\mathbb{Q} ; \mathbb{F}/\mathbb{Q} , where $F = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

Let us prove that F is a subfield of \mathbb{R} . If $u = a + b\sqrt{2} \in F$ and $v = c + d\sqrt{2} \in F$ (with $a, b, c, d \in \mathbb{Q}$), then

$$u - v = (a - c) + (b - d)\sqrt{2} \in F$$

and

$$uv = ac + ad\sqrt{2} + bc\sqrt{2} + 2bd = (ac + 2bd) + (ad + bc)\sqrt{2} \in F.$$

If $w = a + b\sqrt{2} \in F$ $(a,b \in \mathbb{Q})$ and $w \neq 0$, then

$$w^{-1} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2} \in F.$$

Adding elements to a field

Lemma 2.1. Let L be a field, and let $\{F_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of subfields of L. Then $\cap_{{\lambda}\in\Lambda}F_{\lambda}$ is also a subfield of L.

Proof. Let $F = \bigcap_{\lambda \in \Lambda} F_{\lambda}$. Since $0, 1 \in F_{\lambda}$ for all $\lambda \in \Lambda$, we have $0, 1 \in F$. Let $a, b \in F$. Then $a, b \in F_{\lambda}$ for all $\lambda \in \Lambda$, so $a - b \in F_{\lambda}$, and $ab \in F_{\lambda}$ for all $\lambda \in \Lambda$. Thus, $a - b \in F$ and $ab \in F$. Let $c \in F \setminus \{0\}$. Then $c^{-1} \in F_{\lambda}$ for all $\lambda \in \Lambda$, whence $c \in F$. Hence, F is a subfield of L.

Definition. Let L/K be a field extension, and let $A \subseteq L$ be a subset. We denote by K(A) the intersection of all subfields of L that contain both K and A. We say that K(A) is the subfield of L generated by A over K (alternatively, generated by $K \cup A$).

Note that K(A) is indeed a subfield by Lemma 2.1.

If
$$A = \{a_1, \ldots, a_n\}$$
, we write $K(a_1, \ldots, a_n)$ for $K(A)$.

Proposition 2.2. Let L/K be a field extension. Let $A \subseteq L$ be a subset. If $M \subseteq L$ is a subfield containing $K \cup A$, then $K(A) \subseteq M$.

Proof. Obvious from the definition.

Remark. This means that K(A) is the smallest subfield of L containing $K \cup A$, thus giving an alternative description of K(A). (When we say that M is the smallest subfield containing $K \cup A$, we mean that M contains $K \cup A$ and that any other subfield M' that contains $K \cup A$ contains M.)

Example. We claim that

$$\mathbb{Q}(\sqrt{2}) = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}.$$

Indeed, let F be the RHS. We have previously proved that F is a field. Certainly, F contains \mathbb{Q} and $\sqrt{2}$. So, by Proposition 2.2, $F \supseteq \mathbb{Q}(\sqrt{2})$. On the other hand, since $\mathbb{Q}(\sqrt{2})$ is closed under addition and multiplication, we have $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ for all $a, b \in \mathbb{Q}$. So $F \subseteq \mathbb{Q}(\sqrt{2})$. Thus, $F = \mathbb{Q}(\sqrt{2})$ as claimed.

Proposition 2.3. Let $K \subseteq L$ be fields and $A, B \subseteq L$. Then

- (i) $K(A \cup B) = K(A)(B)$;
- (ii) Suppose that L' is a subfield of L containing both K and A. Then K(A) is the same, whether defined as a subfield of L or as a subfield of L'.

Proof. Exercise.

Proposition 2.4. Let $K \subseteq L$ be fields and A be a subset of L. Then K(A) is the set of all elements of L that can be obtained from elements of $K \cup A$ by repeatedly applying the operations of addition, subtraction, multiplication and division.

Proof. Omitted (exercise): this proposition will not be used directly. \Box

DEGREE OF AN EXTENSION

If L/K is a field extension, then L may be viewed as a vector space over K.

Definition. A field extension L/K is said to be *finite* if L is a finite-dimensional vector space over K. In this case, the dimension of L as a K-vector space is called the *degree* of the extension L/K and is denoted by [L:K].

Examples.

Extension Degree Basis
$$\mathbb{Q}(\sqrt{2})/\mathbb{Q}$$
 2 $\{1, \sqrt{2}\}$ \mathbb{R}/\mathbb{Q} ∞ \mathbb{C}/\mathbb{R} 2 $\{1, i\}$ $\mathbb{Q}(i)/\mathbb{Q}, i = \sqrt{-1}$ 2 $\{1, i\}$

Theorem 2.5 (Tower Law). Suppose that $K \subseteq M \subseteq L$ are fields.

- (i) The extension L/K is finite if and only if both L/M and M/K are finite.
- (ii) If L/K is finite, then

$$[L:K] = [L:M][M:K].$$

Proof. First, suppose that L/K is finite. Then M/K is finite because a subspace of a finite-dimensional vector space is finite. Further, let $\{v_1, \ldots, v_s\}$ be a finite set spanning L as a vector space over K. It is clear that $\{v_1, \ldots, v_s\}$ also spans L as a vector space over M, which implies that L/M is finite.

It remains to prove the following: if M/K and L/M are finite, then L/K is finite and [L:K] = [L:M][M:K]. Let $\{e_1, \ldots, e_n\}$ be a basis of L over M and $\{f_1, \ldots, f_m\}$ be a basis of M over K. Then [L:M] = n and [M:K] = m. Let

$$T = \{e_i f_j \mid 1 \le i \le n, \ 1 \le j \le m\}.$$

It suffices to prove that T is a basis of L over K, for then L/K is finite and

$$[M:K] = mn = [M:L][L:K].$$

First, we will prove that T spans L over K. Let $u \in L$. Then

$$u = \sum_{i=1}^{n} a_i e_i$$
 for some $a_1, \dots, a_n \in M$

since $\{e_1, \ldots, e_n\}$ is a basis of L over M. Each a_i can be expressed in the form

$$a_i = \sum_{j=1}^m b_{ij} f_j$$
 where $b_{ij} \in K$

because $\{f_1, \ldots, f_m\}$ is a basis of M over K. Thus,

$$u = \sum_{i} a_{i}e_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} b_{ij}f_{j}\right) e_{i} = \sum_{i=1}^{n} \sum_{j=1}^{m} b_{ij}(f_{j}e_{i}).$$

So T spans L over K.

Secondly, let us prove that T is linearly independent over K. Suppose that

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} e_i f_j = 0 \quad \text{where } c_{ij} \in K \text{ for all } i, j.$$

For each i, consider

$$w_i = \sum_{j=1}^m c_{ij} f_j \in L.$$

Then

$$\sum_{i=1}^{n} w_i e_i = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} e_i f_j = 0.$$

Since e_1, \ldots, e_n are linearly independent over M, we deduce that $w_1 = \cdots = w_n = 0$. That is,

$$\sum_{j=1}^{m} c_{ij} f_j = 0 \quad \text{for each } i.$$

But since f_1, \ldots, f_m are linearly independent over K, we have $c_{ij} = 0$ for all i, j, as required.

Example. Consider $L = \mathbb{Q}(\sqrt{2}, i)$. Let $F = \mathbb{Q}(\sqrt{2})$, so L = F(i). First, one can prove that

$$L = \{c + di \mid c, d \in F\}$$

in the same way as in the previous example; that is, 1, i span L over F. Thus, [L:F]=2 (as 1, i are linearly independent over F and even over \mathbb{R}). By Tower Law,

$$[L:\mathbb{Q}] = [L:F][F:\mathbb{Q}] = 2 \cdot 2 = 4.$$

Moreover, by the proof of Tower Law, $\{1, \sqrt{2}, i, i\sqrt{2}\}$ is a basis of L over \mathbb{Q} .