
3. Polynomials and extensions

Let K be a field. Recall that K[X] denotes the ring of polynomials in one
formal variable X.

Let L be an extension of K, and consider any u ∈ L. We are inter-
ested in the extension K(u)/K. Our approach will be as follows. Consider
1, u, u2, u3, . . .. Either these are linearly independent over K or there exists
n such that un = an−1u

n−1+an−2u
n−2+· · ·+a0 ·1 for some a0, . . . , an−1 ∈ K.

In the latter case, u is a root of Xn − an−1Xn−1 − · · · − a0 ∈ K[X].

Definition. If there exists a non-zero polynomial f ∈ K[X] such that
f(u) = 0, then we say that u is algebraic over K. Otherwise, u is said
to be transcendental over K.

Definition. Suppose that u is algebraic over K. Then the minimal polyno-
mial of u over K is the monic polynomial f of the smallest degree such that
f(u) = 0. We write f = minpolyK(u).

(N.B. We will soon see that the minimal polynomial exists and is unique.)

Definition. The evaluation map εu : K[X]→ L is defined by εu(f) = f(u),
f ∈ K[X].

Lemma 3.1. The evaluation map εu is a ring homomorphism.

Proof. This is a routine check: for all f, g ∈ K[X],

εu(f + g) = (f + g)(u) = f(u) + g(u) = εu(f) + εu(g),

εu(fg) = (fg)(u) = f(u)g(u) = εu(f)εu(g). �

Therefore, ker εu is an ideal of K[X].

Proposition 3.2. The element u ∈ L is algebraic over K if and only if
ker εu 6= {0}. In this case, the minimal polynomial f of u over K exists and
is unique, and we have ker εu = (f).

Proof.
u is algebraic over K ⇔
f(u) = 0 for some non-zero f ∈ K[X] ⇔
f ∈ ker εu for some non-zero f ∈ K[X] ⇔
ker εu 6= {0}.

Now suppose ker εu 6= {0}. By Theorem 7 of the summary of prerequi-
sites from “Polynomials and Rings”, we have ker εu = (f) for some monic
polynomial f ∈ K[X]. Then, for any h ∈ K[X], we have

(3.1) h(u) = 0 ⇔ h ∈ ker εu = (f) ⇔ h is a multiple of f.
1
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This means that, deg f is the smallest amongst the degrees of non-zero
polynomials of which u is a root; so f is a minimal polynomial of u over
K. Further, suppose that h is another such minimal polynomial of u. Then
deg h = deg f and h is a multiple of f , whence h = af for some a ∈ K. But
also, h and f must both be monic, whence a = 1, and so h = f . �

Proposition 3.3. Suppose that u is algebraic over K and f is its minimal
polynomial. Then f is irreducible.

Proof. Suppose f = gh where g and h are non-constant. Then deg(g) <
deg(f) and deg(h) < deg(f). Then 0 = f(u) = g(u)h(u), so u is a root of
either g or h. Without loss of generality, g(u) = 0. To summarise, g(u) = 0,
g 6= 0 and deg(g) < deg(f). But this contradicts the minimality of f , (We
can make g monic by multiplying it by an appropriate scalar.) �

There is another useful description of what it means to be a minimal
polynomial.

Proposition 3.4. Let u ∈ L. Suppose u is a root of a monic and irreducible
polynomial f ∈ K[X]. Then f = minpolyK(u).

Proof. Since f ∈ ker εu, we have ker εu 6= {0}, so u is algebraic. Let g =
minpolyK(u). Then g is not constant (as g 6= 1). But since f ∈ ker εu = (g),
we have f = gh for some h ∈ K[X]. Since f is irreducible and g is non-
constant, this implies f = ag for some a ∈ K. But f and g are both monic,
so f = g. �

Proposition 3.5. Let f ∈ K[X]. Suppose that 2 ≤ deg(f) ≤ 3. Then f is
irreducible over K if and only if f has no root in K.

Proof. If f has a root a ∈ K, then X − a divides f , so f is reducible.
Conversely, if f is reducible, then f = gh for some non-constant g, h ∈ K[X].
Since 3 ≥ deg(f) = deg(g) + deg(h), at least one of g and h has degree 1,
say g. Then g = b · (X − a) for some a, b ∈ K with b 6= 0, so a is a root of g
and hence of f . �

Now we are able to find minimal polynomials in some cases.
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Examples.
u ∈ C algebraic over Q? minpolyQ(u) (if algebraic)
1/2 yes X − 1/2√

3 yes X2 − 3
i yes X2 + 1
3
√

2 yes X −
e no (hard: Hermite’s thm)
π no
e+ π not known

ω = e2πi/3 = −1
2

+
√
3
2
i yes X2 +X + 1

Lemma 3.6. Let u ∈ L be algebraic over K. Then im εu = K(u).

Proof. Let f = minpolyK(u). Let F = im εu. By the First Isomosphism
Theorem, the map ε̄u : K[X]/(f) → F , defined by ε̄u(g + (f)) = εu(g) for
g+(f) ∈ K[X]/(f), is a ring isomorphism between K[X]/(f) and F . Since f
is irreducible over K, K[X]/(f) is a field, whence F is also a field. Moreover,
F contains u because u = εu(X), and F ⊇ K because εu(a) = a for all a ∈ K.
Hence, F ⊇ K(u).

Conversely, for any polynomial f = anX
n + · · · + a1X + a0 ∈ K[X], we

have εu(f) = anu
n + · · · + a1u + a0 ∈ K(u) because K(u) is closed under

addition and multiplication. So F ⊆ K(u), whence F = K(u). �

Theorem 3.7. Let K ⊆ L be fields and u ∈ L. The following are equivalent:

(i) The element u is algebraic over K, with minimal polynomial of degree
n;

(ii) The extension K(u)/K is finite, with [K(u) : K] = n.

{1, u, u2, . . . , un−1} is a basis of K(u)
over K.

Proof. (i) ⇒ (ii). Let f = minpolyK(u) (so that deg(f) = n). We claim
that T = {1, u, u2, . . . , un−1} is a basis of K(u).

First, we show that K(u) = im εu is spanned by T over K. Indeed, let
g ∈ K[X]. By the Euclidean property, g = qf + r for some q, r ∈ K[X] with
deg(r) < n. Thus,

εu(g) = g(u) = q(u)f(u) + r(u) = r(u).

But r = amX
m + · · · + a0 for some m < n and a0, . . . , am ∈ K, so r(u) =

amu
m+· · ·+a0 belongs to the span of T over K. Thus, T spans im εu = K(u)

over K.
Secondly, we prove that T is linearly independent over K. Indeed, sup-

pose (for contradiction) that an−1u
n−1 + an−2u

n−2 + · · · + a0 = 0 for some
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Moreover, if (i) (or (ii)) holds, then
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an−1, . . . , a0 ∈ K which are not all zero. Then h = an−1X
n−1 + an−2X

n−2 +
· · · + a0 ∈ K[X] is not zero and h(u) = 0. Since deg(h) < n, this is a
contradiction to the fact that f = minpolyK(u).

Note that we have proved the last statement of the theorem as well.
⇒ n = [K(u) : K], the elements 1, u, u2, . . . , un must be

linearly dependent over K. That is, anu
n + an−1u

n−1 + · · · + a0 = 0 for
some a0, . . . , an ∈ K, not all zero. So u is a root of the non-zero polynomial
w = anX

n + · · ·+ a0 ∈ K[X]. Thus u is algebraic. We have already proved
that in this case [K(u) : K] = deg(minpolyK(u)). �

Remark. This proof suggests a way of finding the minimal polynomial of
u in some situations. We consider 1, u, u2, . . . and find the smallest n such
that 1, u, . . . , un are linearly dependent (assuming such an n exists). More
specifically, we find the coefficients a0, . . . , an−1 such that un + an−1u

n−1 +
· · · + a1u + a0 = 0. Then Xn + an−1X

n−1 + · · · + a1X + a0 is the minimal
polynomial of u over K. [N.B. This is not the only way to find minimal
polynomials: we have already seen other ways, and we will see more. Use
your judgement to select the best approach for each particular problem!]

Corollary 3.8. Let L/K be a field extension. Suppose L = K(u1, . . . , uk)
for some u1, . . . , uk ∈ L. For each i = 1, . . . , k, assume that the extension
K(ui)/K is finite, and write ni = [K(ui) : K]. Then L/K is finite and
[L : K] ≤ n1n2 · · ·nk.

Proof. We argue by induction on k. If k = 1, the result holds by Theo-
rem 3.7. Let M = K(u1, . . . , uk−1). Then [M : K] ≤ n1 · · ·nk−1 by the
inductive hypothesis. Since K(uk)/K is finite, the element uk is algebraic
over K. Moreover, g = minpolyK(uk) has degree nk = [K(uk) : K] (by
Theorem 3.7). Now g ∈M [X] and g(uk) = 0, so uk is algebraic over M and
deg(minpolyM(uk)) ≤ nk. Hence, [L : M ] ≤ k (by Theorem 2.14). Thus,
by Tower Law, [L : K] is finite and

[L : K] = [L : M ][M : K] ≤ nk(n1 · · ·nk−1) = n1 · · ·nk. �

Corollary 3.9. Let L/K be a finite field extension. Then every element of
L is algebraic over K.

Corollary 3.10. Let L/K be any field extension. Let F be the set of the
elements of L that are algebraic over K. Then F is a subfield of L.

Proof. Clearly, 0, 1 ∈ F . Let u, v ∈ F , and consider the subfield K(u, v) of
L. Since u, v are algebraic over K, the extensions K(u)/K and K(v)/K are
finite by Theorem 3.7. But then K(u, v)/K is finite by Corollary 3.8. By
Theorem 3.7 again, this implies that every element of K(u, v) is algebraic

(ii) (i). Since

 n
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over K, so K(u, v) ⊆ F . In particular, u + v, uv ∈ F ; and if v 6= 0, then
v−1 ∈ F . Hence, F is a subfield of L. �

For example, the set Q̄ of all complex numbers that are algebraic over Q
is a field: Q̄ is called the field of algebraic numbers.




