3. POLYNOMIALS AND EXTENSIONS

Let K be a field. Recall that K[X]| denotes the ring of polynomials in one
formal variable X.

Let L be an extension of K, and consider any u € L. We are inter-
ested in the extension K(u)/K. Our approach will be as follows. Consider

1,u,u?,u?,.... Either these are linearly independent over K or there exists
n such that u™ = a,_1u" ' +a,_ou"2+---4ag-1 for some ag, ...,a,_1 € K.
In the latter case, u is a root of X" —a, X" ! — ... —qy € K[X].

Definition. If there exists a non-zero polynomial f € K[X] such that
f(u) = 0, then we say that u is algebraic over K. Otherwise, u is said
to be transcendental over K.

Definition. Suppose that u is algebraic over K. Then the minimal polyno-
meal of u over K is the monic polynomial f of the smallest degree such that
f(u) = 0. We write f = minpoly x(u).

(N.B. We will soon see that the minimal polynomial exists and is unique.)
Definition. The evaluation map €,: K[X| — L is defined by €,(f) = f(u),
f e K[X].

Lemma 3.1. The evaluation map €, is a ring homomorphism.
Proof. This is a routine check: for all f,g € K[X],
c(f +9) = (f+9)(u) = f(u) + g(u) = eu(f) + €u(9),
cu(fg) = (f9)(u) = f(u)g(u) = eu(f)eu(g)- N

Therefore, kere, is an ideal of K[X].

Proposition 3.2. The element u € L 1is algebraic over K if and only if

kere, # {0}. In this case, the minimal polynomial f of u over K ezists and
is unique, and we have ker e, = (f).

Proof.
u is algebraic over K &
f(u) = 0 for some non-zero f € K[X]| <
f € kerg, for some non-zero f € K[X| <

kere, # {0}.

Now suppose kere, # {0}. By Theorem 7 of the summary of prerequi-
sites from “Polynomials and Rings”, we have kere, = (f) for some monic
polynomial f € K[X]. Then, for any h € K[X], we have

(3.1) h(u) =0 < h € kere, = (f) < his a multiple of f.
1
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This means that, deg f is the smallest amongst the degrees of non-zero
polynomials of which u is a root; so f is a minimal polynomial of u over
K. Further, suppose that h is another such minimal polynomial of u. Then
deg h = deg f and h is a multiple of f, whence h = af for some a € K. But
also, h and f must both be monic, whence a = 1, and so h = f. O

Proposition 3.3. Suppose that u is algebraic over K and f is its minimal
polynomial. Then f is irreducible.

Proof. Suppose f = gh where g and h are non-constant. Then deg(g) <
deg(f) and deg(h) < deg(f). Then 0 = f(u) = g(u)h(u), so u is a root of
either g or h. Without loss of generality, g(u) = 0. To summarise, g(u) = 0,
g # 0 and deg(g) < deg(f). But this contradicts the minimality of f, (We
can make g monic by multiplying it by an appropriate scalar.) O

There is another useful description of what it means to be a minimal
polynomial.

Proposition 3.4. Let u € L. Suppose u is a root of a monic and irreducible
polynomial f € K[X]. Then f = minpoly x(u).

Proof. Since f € kere,, we have kere, # {0}, so u is algebraic. Let g =
minpoly; (u). Then g is not constant (as g # 1). But since f € kere, = (g),
we have f = gh for some h € K[X]. Since f is irreducible and ¢ is non-
constant, this implies f = ag for some a € K. But f and g are both monic,
so f=g. OJ

Proposition 3.5. Let f € K[X]. Suppose that 2 < deg(f) < 3. Then f is
wrreducible over K if and only if f has no root in K.

Proof. If f has a root a € K, then X — a divides f, so f is reducible.
Conversely, if f is reducible, then f = gh for some non-constant g, h € K[X].
Since 3 > deg(f) = deg(g) + deg(h), at least one of g and h has degree 1,

say g. Then g =b- (X — a) for some a,b € K with b # 0, so a is a root of g
and hence of f. O

Now we are able to find minimal polynomials in some cases.



Examples.
ueC algebraic over Q7 minpolyg(u) (if algebraic)
1/2 yes X —1/2
V3 yes X?-3
! yes X% +1
/2 yes X3 -2
e no (hard: Hermite’s thm)
T no
e+ not known
w:ezm/iz’:—%—i-‘/?gi yes X2+ X+1

Lemma 3.6. Let u € L be algebraic over K. Then ime, = K (u).

Proof. Let f = minpoly,(u). Let FF = ime,. By the First Isomosphism
Theorem, the map €,: K[X]/(f) — F, defined by €,(g + (f)) = €e.(g) for
g+(f) € K[X]/(f), is aring isomorphism between K[X]/(f) and F. Since f
is irreducible over K, K[X]/(f) is a field, whence F is also a field. Moreover,
F contains u because u = €,(X), and F O K because ¢,(a) = aforalla € K.
Hence, F' O K(u).

Conversely, for any polynomial f = a, X" + -+ + a1 X + a9 € K[X], we
have €,(f) = a,u™ + -+ + ayu + ap € K(u) because K(u) is closed under
addition and multiplication. So F' C K (u), whence ' = K (u). O

Theorem 3.7. Let K C L be fields andu € L. The following are equivalent:

(i) The element u is algebraic over K, with minimal polynomial of degree
n;
(ii) The extension K(u)/K is finite, with [K(u) : K| =n.
Moreover, if (i) (or (ii)) holds, then — {1,u,u?, ..., u"" '} is a basis of K(u)
over K.

Proof. (i) = (ii). Let f = minpolyy(u) (so that deg(f) = n). We claim
that T'= {1,u,u? ..., u" 1} is a basis of K(u).

First, we show that K(u) = ime, is spanned by T over K. Indeed, let
g € K[X]. By the Euclidean property, g = ¢f +r for some ¢,r € K[X] with
deg(r) < n. Thus,

eu(g9) = g(u) = q(u) f(u) + r(u) = r(u).
But r = a,, X™ + - -+ + qg for some m < n and ag,...,a, € K, so r(u) =
amu™+- - -+ag belongs to the span of T over K. Thus, T spans ime, = K (u)
over K.
Secondly, we prove that T is linearly independent over K. Indeed, sup-
pose (for contradiction) that a,_ 1u™ ™ + a, su™ 2+ -+ + ag = 0 for some
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Ap_1,...,a0 € K which are not all zero. Then h = a,_1 X" ' 4+ a,_o X" 2 +
-+ 4+ ap € K[X] is not zero and h(u) = 0. Since deg(h) < n, this is a
contradiction to the fact that f = minpoly x (u).

Note that we have proved the last statement of the theorem as well.

(ii) = (i).Since n = [K(u) : K], the elements 1,u,u?, ..., u™ must be
linearly dependent over K. That is, a,u™ + ap_u™ ' + - 4+ a9 = 0 for
some ay, . .., a, € K, not all zero. So u is a root of the non-zero polynomial
w=a, X"+ +ap € K[X]. Thus u is algebraic. We have already proved
that in this case [K(u) : K] = deg(minpoly x (u)). O
Remark. This proof suggests a way of finding the minimal polynomial of
u in some situations. We consider 1,u,u?,... and find the smallest n such
that 1,u,...,u" are linearly dependent (assuming such an n exists). More
specifically, we find the coefficients ao, . .., a,_1 such that u™ + a,_ju" ! +
o4 au+ag=0. Then X" +a, 1 X" ' 4+ -+ a1 X + ay is the minimal
polynomial of u over K. [N.B. This is not the only way to find minimal
polynomials: we have already seen other ways, and we will see more. Use
your judgement to select the best approach for each particular problem!]

Corollary 3.8. Let L/K be a field extension. Suppose L = K(uq, ..., ug)
for some uy,...,ur € L. For each i = 1,...,k, assume that the extension
K(w;)/K s finite, and write n; = [K(u;) : K|. Then L/K is finite and
[L: K] <ning---ng.

Proof. We argue by induction on k. If k& = 1, the result holds by Theo-
rem 3.7. Let M = K(uy,...,up—1). Then [M : K| < ny---ni_y by the
inductive hypothesis. Since K(uy)/K is finite, the element wy is algebraic
over K. Moreover, g = minpoly . (ux) has degree n, = [K(ux) : K] (by
Theorem 3.7). Now g € M[X] and g(uy) = 0, so uy is algebraic over M and
deg(minpoly,,(ug)) < ng. Hence, [L : M] < ny (by Theorem 2.14). Thus,
by Tower Law, [L : K] is finite and

[L:K]=[L:M[M: K] <np(n - np1) =ni-n. 0

Corollary 3.9. Let L/K be a finite field extension. Then every element of
L s algebraic over K.

Corollary 3.10. Let L/K be any field extension. Let F' be the set of the
elements of L that are algebraic over K. Then F is a subfield of L.

Proof. Clearly, 0,1 € F. Let u,v € F, and consider the subfield K (u,v) of
L. Since u,v are algebraic over K, the extensions K (u)/K and K (v)/K are
finite by Theorem 3.7. But then K(u,v)/K is finite by Corollary 3.8. By
Theorem 3.7 again, this implies that every element of K(u,v) is algebraic
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over K, so K(u,v) C F. In particular, u + v,uv € F; and if v # 0, then
v~t € F. Hence, F is a subfield of L. O

For example, the set Q of all complex numbers that are algebraic over Q
is a field: Q is called the field of algebraic numbers.





