3. Polynomials and extensions

Let K be a field. Recall that $K[X]$ denotes the ring of polynomials in one formal variable X.

Let L be an extension of K, and consider any $u \in L$. We are interested in the extension $K(u) / K$. Our approach will be as follows. Consider $1, u, u^{2}, u^{3}, \ldots$. Either these are linearly independent over K or there exists n such that $u^{n}=a_{n-1} u^{n-1}+a_{n-2} u^{n-2}+\cdots+a_{0} \cdot 1$ for some $a_{0}, \ldots, a_{n-1} \in K$. In the latter case, u is a root of $X^{n}-a_{n-1} X^{n-1}-\cdots-a_{0} \in K[X]$.

Definition. If there exists a non-zero polynomial $f \in K[X]$ such that $f(u)=0$, then we say that u is algebraic over K. Otherwise, u is said to be transcendental over K.

Definition. Suppose that u is algebraic over K. Then the minimal polynomial of u over K is the monic polynomial f of the smallest degree such that $f(u)=0$. We write $f=$ minpoly $_{K}(u)$.
(N.B. We will soon see that the minimal polynomial exists and is unique.)

Definition. The evaluation map $\epsilon_{u}: K[X] \rightarrow L$ is defined by $\epsilon_{u}(f)=f(u)$, $f \in K[X]$.

Lemma 3.1. The evaluation map ϵ_{u} is a ring homomorphism.
Proof. This is a routine check: for all $f, g \in K[X]$,

$$
\begin{aligned}
\epsilon_{u}(f+g) & =(f+g)(u)=f(u)+g(u)=\epsilon_{u}(f)+\epsilon_{u}(g), \\
\epsilon_{u}(f g) & =(f g)(u)=f(u) g(u)=\epsilon_{u}(f) \epsilon_{u}(g) .
\end{aligned}
$$

Therefore, $\operatorname{ker} \epsilon_{u}$ is an ideal of $K[X]$.
Proposition 3.2. The element $u \in L$ is algebraic over K if and only if $\operatorname{ker} \epsilon_{u} \neq\{0\}$. In this case, the minimal polynomial f of u over K exists and is unique, and we have $\operatorname{ker} \epsilon_{u}=(f)$.
Proof.

$$
\begin{array}{ll}
u \text { is algebraic over } K & \Leftrightarrow \\
f(u)=0 \text { for some non-zero } f \in K[X] & \Leftrightarrow \\
f \in \operatorname{ker} \epsilon_{u} \text { for some non-zero } f \in K[X] & \Leftrightarrow \\
\operatorname{ker} \epsilon_{u} \neq\{0\} . &
\end{array}
$$

Now suppose $\operatorname{ker} \epsilon_{u} \neq\{0\}$. By Theorem 7 of the summary of prerequisites from "Polynomials and Rings", we have ker $\epsilon_{u}=(f)$ for some monic polynomial $f \in K[X]$. Then, for any $h \in K[X]$, we have

$$
\begin{equation*}
h(u)=0 \Leftrightarrow h \in \operatorname{ker} \epsilon_{u}=\underset{1}{(f)} \Leftrightarrow h \text { is a multiple of } f . \tag{3.1}
\end{equation*}
$$

This means that, $\operatorname{deg} f$ is the smallest amongst the degrees of non-zero polynomials of which u is a root; so f is a minimal polynomial of u over K. Further, suppose that h is another such minimal polynomial of u. Then $\operatorname{deg} h=\operatorname{deg} f$ and h is a multiple of f, whence $h=a f$ for some $a \in K$. But also, h and f must both be monic, whence $a=1$, and so $h=f$.

Proposition 3.3. Suppose that u is algebraic over K and f is its minimal polynomial. Then f is irreducible.

Proof. Suppose $f=g h$ where g and h are non-constant. Then $\operatorname{deg}(g)<$ $\operatorname{deg}(f)$ and $\operatorname{deg}(h)<\operatorname{deg}(f)$. Then $0=f(u)=g(u) h(u)$, so u is a root of either g or h. Without loss of generality, $g(u)=0$. To summarise, $g(u)=0$, $g \neq 0$ and $\operatorname{deg}(g)<\operatorname{deg}(f)$. But this contradicts the minimality of f, (We can make g monic by multiplying it by an appropriate scalar.)

There is another useful description of what it means to be a minimal polynomial.

Proposition 3.4. Let $u \in L$. Suppose u is a root of a monic and irreducible polynomial $f \in K[X]$. Then $f=$ minpoly $_{K}(u)$.

Proof. Since $f \in \operatorname{ker} \epsilon_{u}$, we have $\operatorname{ker} \epsilon_{u} \neq\{0\}$, so u is algebraic. Let $g=$ minpoly $_{K}(u)$. Then g is not constant (as $g \neq 1$). But since $f \in \operatorname{ker} \epsilon_{u}=(g)$, we have $f=g h$ for some $h \in K[X]$. Since f is irreducible and g is nonconstant, this implies $f=a g$ for some $a \in K$. But f and g are both monic, so $f=g$.

Proposition 3.5. Let $f \in K[X]$. Suppose that $2 \leq \operatorname{deg}(f) \leq 3$. Then f is irreducible over K if and only if f has no root in K.

Proof. If f has a root $a \in K$, then $X-a$ divides f, so f is reducible. Conversely, if f is reducible, then $f=g h$ for some non-constant $g, h \in K[X]$. Since $3 \geq \operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h)$, at least one of g and h has degree 1 , say g. Then $g=b \cdot(X-a)$ for some $a, b \in K$ with $b \neq 0$, so a is a root of g and hence of f.

Now we are able to find minimal polynomials in some cases.

Examples.

$u \in \mathbb{C}$	algebraic over $\mathbb{Q} ?$	minpoly $_{\mathbb{Q}}(u)$ (if algebraic)
$1 / 2$	yes	$X-1 / 2$
$\sqrt{3}$	yes	$X^{2}-3$
i	yes	$X^{2}+1$
$\sqrt[3]{2}$	yes	$X^{3}-2$
e	no (hard: Hermite's thm)	
π	no	
$e+\pi$	not known	
$\omega=e^{2 \pi i / 3}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$	yes	$X^{2}+X+1$

Lemma 3.6. Let $u \in L$ be algebraic over K. Then $\operatorname{im} \epsilon_{u}=K(u)$.
Proof. Let $f=\operatorname{minpoly}_{K}(u)$. Let $F=\operatorname{im} \epsilon_{u}$. By the First Isomosphism Theorem, the map $\bar{\epsilon}_{u}: K[X] /(f) \rightarrow F$, defined by $\bar{\epsilon}_{u}(g+(f))=\epsilon_{u}(g)$ for $g+(f) \in K[X] /(f)$, is a ring isomorphism between $K[X] /(f)$ and F. Since f is irreducible over $K, K[X] /(f)$ is a field, whence F is also a field. Moreover, F contains u because $u=\epsilon_{u}(X)$, and $F \supseteq K$ because $\epsilon_{u}(a)=a$ for all $a \in K$. Hence, $F \supseteq K(u)$.

Conversely, for any polynomial $f=a_{n} X^{n}+\cdots+a_{1} X+a_{0} \in K[X]$, we have $\epsilon_{u}(f)=a_{n} u^{n}+\cdots+a_{1} u+a_{0} \in K(u)$ because $K(u)$ is closed under addition and multiplication. So $F \subseteq K(u)$, whence $F=K(u)$.

Theorem 3.7. Let $K \subseteq L$ be fields and $u \in L$. The following are equivalent:
(i) The element u is algebraic over K, with minimal polynomial of degree n;
(ii) The extension $K(u) / K$ is finite, with $[K(u): K]=n$.

Moreover, if (i) (or (ii)) holds, then $\quad\left\{1, u, u^{2}, \ldots, u^{n-1}\right\}$ is a basis of $K(u)$ over K.

Proof. (i) \Rightarrow (ii). Let $f=\operatorname{minpoly}_{K}(u)$ (so that $\operatorname{deg}(f)=n$). We claim that $T=\left\{1, u, u^{2}, \ldots, u^{n-1}\right\}$ is a basis of $K(u)$.

First, we show that $K(u)=\operatorname{im} \epsilon_{u}$ is spanned by T over K. Indeed, let $g \in K[X]$. By the Euclidean property, $g=q f+r$ for some $q, r \in K[X]$ with $\operatorname{deg}(r)<n$. Thus,

$$
\epsilon_{u}(g)=g(u)=q(u) f(u)+r(u)=r(u) .
$$

But $r=a_{m} X^{m}+\cdots+a_{0}$ for some $m<n$ and $a_{0}, \ldots, a_{m} \in K$, so $r(u)=$ $a_{m} u^{m}+\cdots+a_{0}$ belongs to the span of T over K. Thus, T spans im $\epsilon_{u}=K(u)$ over K.

Secondly, we prove that T is linearly independent over K. Indeed, suppose (for contradiction) that $a_{n-1} u^{n-1}+a_{n-2} u^{n-2}+\cdots+a_{0}=0$ for some
$a_{n-1}, \ldots, a_{0} \in K$ which are not all zero. Then $h=a_{n-1} X^{n-1}+a_{n-2} X^{n-2}+$ $\cdots+a_{0} \in K[X]$ is not zero and $h(u)=0$. Since $\operatorname{deg}(h)<n$, this is a contradiction to the fact that $f=$ minpoly $_{K}(u)$.

Note that we have proved the last statement of the theorem as well.
(ii) \Rightarrow (i). Since $n=[K(u): K]$, the elements $1, u, u^{2}, \ldots, u^{n}$ must be linearly dependent over K. That is, $a_{n} u^{n}+a_{n-1} u^{n-1}+\cdots+a_{0}=0$ for some $a_{0}, \ldots, a_{n} \in K$, not all zero. So u is a root of the non-zero polynomial $w=a_{n} X^{n}+\cdots+a_{0} \in K[X]$. Thus u is algebraic. We have already proved that in this case $[K(u): K]=\operatorname{deg}\left(\operatorname{minpoly}_{K}(u)\right)$.
Remark. This proof suggests a way of finding the minimal polynomial of u in some situations. We consider $1, u, u^{2}, \ldots$ and find the smallest n such that $1, u, \ldots, u^{n}$ are linearly dependent (assuming such an n exists). More specifically, we find the coefficients a_{0}, \ldots, a_{n-1} such that $u^{n}+a_{n-1} u^{n-1}+$ $\cdots+a_{1} u+a_{0}=0$. Then $X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$ is the minimal polynomial of u over K. [N.B. This is not the only way to find minimal polynomials: we have already seen other ways, and we will see more. Use your judgement to select the best approach for each particular problem!]
Corollary 3.8. Let L / K be a field extension. Suppose $L=K\left(u_{1}, \ldots, u_{k}\right)$ for some $u_{1}, \ldots, u_{k} \in L$. For each $i=1, \ldots, k$, assume that the extension $K\left(u_{i}\right) / K$ is finite, and write $n_{i}=\left[K\left(u_{i}\right): K\right]$. Then L / K is finite and $[L: K] \leq n_{1} n_{2} \cdots n_{k}$.

Proof. We argue by induction on k. If $k=1$, the result holds by Theorem 3.7. Let $M=K\left(u_{1}, \ldots, u_{k-1}\right)$. Then $[M: K] \leq n_{1} \cdots n_{k-1}$ by the inductive hypothesis. Since $K\left(u_{k}\right) / K$ is finite, the element u_{k} is algebraic over K. Moreover, $g=$ minpoly $_{K}\left(u_{k}\right)$ has degree $n_{k}=\left[K\left(u_{k}\right): K\right]$ (by Theorem 3.7). Now $g \in M[X]$ and $g\left(u_{k}\right)=0$, so u_{k} is algebraic over M and $\operatorname{deg}\left(\operatorname{minpoly}_{M}\left(u_{k}\right)\right) \leq n_{k}$. Hence, $[L: M] \leq n_{k}$ (by Theorem 2.14). Thus, by Tower Law, $[L: K]$ is finite and

$$
[L: K]=[L: M][M: K] \leq n_{k}\left(n_{1} \cdots n_{k-1}\right)=n_{1} \cdots n_{k}
$$

Corollary 3.9. Let L / K be a finite field extension. Then every element of L is algebraic over K.

Corollary 3.10. Let L / K be any field extension. Let F be the set of the elements of L that are algebraic over K. Then F is a subfield of L.
Proof. Clearly, $0,1 \in F$. Let $u, v \in F$, and consider the subfield $K(u, v)$ of L. Since u, v are algebraic over K, the extensions $K(u) / K$ and $K(v) / K$ are finite by Theorem 3.7. But then $K(u, v) / K$ is finite by Corollary 3.8. By Theorem 3.7 again, this implies that every element of $K(u, v)$ is algebraic
over K, so $K(u, v) \subseteq F$. In particular, $u+v, u v \in F$; and if $v \neq 0$, then $v^{-1} \in F$. Hence, F is a subfield of L.

For example, the set $\overline{\mathbb{Q}}$ of all complex numbers that are algebraic over \mathbb{Q} is a field: $\overline{\mathbb{Q}}$ is called the field of algebraic numbers.

