4. Simple extensions

A field extension L / K is said to be simple if $L=K(u)$ for some $u \in L$. In Chapter 2 we considered an element of an extension and associated a polynomial to it, the minimal polynomial. Here we reverse the process: given a polynomial, we construct an extension.

Theorem 4.1. Let K be a field. Suppose that $f \in K[X]$ is irreducible. Then there exist an extension L of K and $u \in L$ such that u is a root of f and $L=K(u)$.
Proof. Consider $L=K[X] /(f)$. Since f is irreducible, the ideal (f) is maximal in $K[X]$, so L is a field. The map $\iota: K \rightarrow L, \iota(a)=a+(f)$ is clearly a ring homomorphism. It is also injective: if $\iota(a)=0$, then $a+(f)=0+(f)$, i.e. $a \in(f)$, which forces $a=0 \operatorname{because} \operatorname{deg}(f) \geq 1$. So we can identify K with its image $\{a+(f) \mid a \in K\}$ using ι and hence view L as an extension of K.

Write $f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}, a_{n} \neq 0$. Let $u=X+(f) \in L$. Then

$$
\begin{aligned}
f(u) & =\left(a_{n}+(f)\right) u^{n}+\cdots+\left(a_{0}+(f)\right)= \\
& =\left(a_{n}+(f)\right)(X+(f))^{n}+\cdots+\left(a_{0}+(f)\right)= \\
& =\left(a_{n} X^{n}+\cdots+a_{0}\right)+(f) \\
& =f+(f)=0+(f),
\end{aligned}
$$

so u is a root of f.
It remains to show that $K(u)=L$. Let $g+(f)=b_{m} X^{m}+\cdots+b_{0}+(f) \in L$. Then $g+(f)=\left(b_{m}+(f)\right)(X+(f))^{m}+\cdots+\left(b_{0}+(f)\right) \in K(u)$ since $K(u)$ must be closed under addition and multiplication. Thus $K(u)=L$.

Remark. If L is the field constructed in the preceding proof, then we have: $[L: K]=n$, and a basis of L over K is $\left\{1+(f), X+(f), X^{2}+(f), \ldots, X^{n-1}+\right.$ (f) $\}$.

Lemma 4.2. Let $K \subseteq L$ be fields. Suppose that $u_{1}, \ldots, u_{m} \in L$ are such that $L=K\left(u_{1}, \ldots, u_{m}\right)$. Let M be another field, and suppose that two homomorphisms $\alpha: L \rightarrow M$ and $\beta: L \rightarrow M$ satisfy $\left.\alpha\right|_{K}=\left.\beta\right|_{K}$ and $\alpha\left(u_{i}\right)=$ $\beta\left(u_{i}\right)$ for all $i=1, \ldots, m$. Then $\alpha=\beta$.

In other words, a homomorphism from $L=K\left(u_{1}, \ldots, u_{m}\right)$ to another field is uniquely determined by what it does on K and on u_{1}, \ldots, u_{m}.
Proof. Let $F=\{v \in L \mid \alpha(v)=\beta(v)\}$. We claim that F is a field. This is easy to check: e.g. if $y, z \in F$ and $z \neq 0$ then $\alpha(y / z)=\alpha(y) / \alpha(z)=$ $\beta(y) / \beta(z)=\beta(y / z)$, so $y / z \in F$.

Furthermore, by the hypothesis, $K \subseteq F$ and $\left\{u_{1}, \ldots, u_{m}\right\} \subseteq F$. It follows that $L=K\left(u_{1}, \ldots, u_{m}\right) \subseteq F$, whence $L=F$. This means that $\alpha=\beta$.

We want to show that the simple extension in Theorem 4.1 is in some sense unique.

Idea: Recall from Chapter 2 that if $u \in L \supseteq K$ and $f=\operatorname{minpoly}_{K}(u)$, then $\epsilon_{u}: K[X] \rightarrow K(u)$ is a surjective homomorphism and hence we have an isomorphism $\epsilon_{u}: K[X] /(f) \rightarrow K(u)$. Thus, provided $u \in L$ has f as the minimal polynomial, $K(u)$ must be isomorphic to the extension $K[X] /(f)$ that we constructed in the proof of Theorem 4.1.

If $\theta: K \rightarrow K^{\prime}$ is an isomorphism between two fields K and K^{\prime}, then we define the map $\tilde{\theta}: K[X] \rightarrow K^{\prime}[X]$ by

$$
\tilde{\theta}\left(a_{n} X^{n}+\cdots+a_{0}\right)=\theta\left(a_{n}\right) X^{n}+\cdots+\theta\left(a_{0}\right), \quad a_{0}, \ldots, a_{n} \in K .
$$

It is clear that $\tilde{\theta}: K[X] \rightarrow K^{\prime}[X]$ is a ring isomorphism (exercise).
Theorem 4.3. Let K and K^{\prime} be fields, and suppose that $\theta: K \rightarrow K^{\prime}$ is an isomorphism. Let $L=K(u)$ and $L^{\prime}=K^{\prime}\left(u^{\prime}\right)$ be two finite simple extensions. Let $f=\operatorname{minpoly}_{K}(u)$ and $f^{\prime}=\operatorname{minpoly}_{K}^{\prime}\left(u^{\prime}\right)$, and suppose that $f^{\prime}=\tilde{\theta}(f)$. Then there exists a unique isomorphism $\alpha: L \rightarrow L^{\prime}$ such that $\left.\alpha\right|_{K}=\theta$ and $\alpha(u)=u^{\prime}$.

Corollary 4.4. Let $L=K(u)$ and $L^{\prime}=K\left(u^{\prime}\right)$ simple extensions of K. Suppose that u and u^{\prime} are algebraic over K and have the same minimal polynomial. Then there is a unique isomorphism $\alpha: L \rightarrow L^{\prime}$ such that $\alpha(u)=$ u^{\prime} and $\alpha(a)=a$ for all $a \in K$.

Proof. Take $\theta=\mathrm{id}_{K}$ in the previous theorem.
Lemma 4.5. Let $\theta: K \rightarrow K^{\prime}$ be an isomorphism between two fields K and K^{\prime}. Then, for every $f \in K[X]$, $\tilde{\theta}$ induces a ring homomorphism $\phi_{f}: K[X] /(f) \rightarrow K^{\prime}[X] /(\tilde{\theta}(f))$, given by $\phi_{f}(g+(f))=\tilde{\theta}(g)+(\tilde{\theta}(f))$.
Proof. Let $I=(f)$ and $I^{\prime}=(\tilde{\theta}(f))$. Let $\pi: K^{\prime}[X] \rightarrow K^{\prime}[X] / I^{\prime}$ be the canonical surjection, given by $\pi(g)=g+I^{\prime}$. Then $\pi \circ \tilde{\theta}: K[X] \rightarrow K\left[X^{\prime}\right] / I^{\prime}$ is a surjective homomorphism. We have $\operatorname{ker}(\pi \circ \tilde{\theta})=I$. Indeed, if $h \in K[X]$, then $(\pi \circ \tilde{\theta})(h)=0$ if and only if $\tilde{\theta}(h) \in I^{\prime}$ iff $\tilde{\theta}(h)$ is a multiple of $\tilde{\theta}(f)$ iff h is a multiple of f iff $h \in I$.

Hence, by the First Isomorphism Theorem, there is an isomorphism

$$
\phi_{f}: K[X] / I \rightarrow K^{\prime}[X] / I^{\prime}
$$

given by

$$
\phi_{f}(g+I)=(\pi \circ \tilde{\theta})(g)=\tilde{\theta}(g)+I^{\prime} .
$$

Proof of Theorem 4.3. First, observe that, if α exists, then it is unique by Lemma 4.2.

By Lemma 2.13 and the First Isomorphism Theorem, the evaluation map $\epsilon_{u}: K[X] \rightarrow K(u)$ yields an isomorphism

$$
\bar{\epsilon}_{u}: K[X] /(f) \rightarrow K(u)
$$

given by $\bar{\epsilon}_{u}(g+(f))=\epsilon_{u}(g)=g(u)$. Similarly, there is an isomorphism

$$
\bar{\epsilon}_{u}^{\prime}: K^{\prime}[X] /\left(f^{\prime}\right) \rightarrow K^{\prime}\left(u^{\prime}\right)
$$

given by $\bar{e}^{\prime}{ }_{u}(h)=h\left(u^{\prime}\right)$. Finally, Lemma 4.5 yields an isomosphism

$$
\phi_{f}: K[X] /(f) \rightarrow K^{\prime}[X] /\left(f^{\prime}\right)
$$

given by $\phi_{f}(g+(f))=\tilde{\theta}(g) \pm\left(f^{\prime}\right)$. Let $\alpha=\bar{\epsilon}^{\prime}{ }_{u} \circ \phi_{f} \circ \bar{e}_{u}^{-1}: L \rightarrow L^{\prime}$. Then $\alpha(u)=\bar{\epsilon}^{\prime}{ }_{u} \circ \phi_{f}(X+(f))=\bar{\epsilon}^{\prime}{ }_{u}\left(\underline{X}+\left(f^{\prime}\right)\right)=u^{\prime}$. Also, for every $a \in K$, we have $\alpha(a)=\bar{\epsilon}^{\prime}{ }_{u} \circ \phi_{f}(a+(f))=\bar{\epsilon}^{\prime}{ }_{u}\left(\theta(a)+\left(f^{\prime}\right)\right)=\theta(a)$. Thus $\left.\alpha\right|_{K}=\theta$.

Example. The field \mathbb{C} is obtained from \mathbb{R} by "adding" a root of the polynomial $X^{2}+1$, so $\mathbb{C} \cong \mathbb{R}[X] /\left(X^{2}+1\right)$.

