
4. Simple extensions

A field extension L/K is said to be simple if L = K(u) for some u ∈ L.
In Chapter 2 we considered an element of an extension and associated

a polynomial to it, the minimal polynomial. Here we reverse the process:
given a polynomial, we construct an extension.

Theorem 4.1. Let K be a field. Suppose that f ∈ K[X] is irreducible.
Then there exist an extension L of K and u ∈ L such that u is a root of f
and L = K(u).

Proof. Consider L = K[X]/(f). Since f is irreducible, the ideal (f) is
maximal in K[X], so L is a field. The map ι : K → L, ι(a) = a + (f)
is clearly a ring homomorphism. It is also injective: if ι(a) = 0, then
a + (f) = 0 + (f), i.e. a ∈ (f), which forces a = 0 because deg(f) ≥ 1. So
we can identify K with its image {a+ (f) | a ∈ K} using ι and hence view
L as an extension of K.

Write f = anX
n + an−1X

n−1 + · · · + a0, an 6= 0. Let u = X + (f) ∈ L.
Then

f(u) = (an + (f))un + · · ·+ (a0 + (f)) =

= (an + (f))(X + (f))n + · · ·+ (a0 + (f)) =

= (anX
n + · · ·+ a0) + (f)

= f + (f) = 0 + (f),

so u is a root of f .
It remains to show that K(u) = L. Let g+(f) = bmX

m+· · ·+b0+(f) ∈ L.
Then g + (f) = (bm + (f))(X + (f))m + · · ·+ (b0 + (f)) ∈ K(u) since K(u)
must be closed under addition and multiplication. Thus K(u) = L. �

Remark. If L is the field constructed in the preceding proof, then we have:
[L : K] = n, and a basis of L over K is {1+(f), X+(f), X2+(f), . . . , Xn−1+
(f)}.

Lemma 4.2. Let K ⊆ L be fields. Suppose that u1, . . . , um ∈ L are such
that L = K(u1, . . . , um). Let M be another field, and suppose that two
homomorphisms α : L→ M and β : L→ M satisfy α|K = β|K and α(ui) =
β(ui) for all i = 1, . . . ,m. Then α = β.

In other words, a homomorphism from L = K(u1, . . . , um) to another field
is uniquely determined by what it does on K and on u1, . . . , um.

Proof. Let F = {v ∈ L | α(v) = β(v)}. We claim that F is a field. This
is easy to check: e.g. if y, z ∈ F and z 6= 0 then α(y/z) = α(y)/α(z) =
β(y)/β(z) = β(y/z), so y/z ∈ F .

1



2

Furthermore, by the hypothesis, K ⊆ F and u1, . . . , um ⊆ F . It follows
that L = K(u1, . . . , um) ⊆ F , whence L = F . This means that α = β. �

We want to show that the simple extension in Theorem 4.1 is in some
sense unique.

Idea: Recall from Chapter 2 that if u ∈ L ⊇ K and f = minpolyK(u),
then εu : K[X] → K(u) is a surjective homomorphism and hence we have
an isomorphism εu : K[X]/(f)→ K(u). Thus, provided u ∈ L has f as the
minimal polynomial, K(u) must be isomorphic to the extension K[X]/(f)
that we constructed in the proof of Theorem 4.1.

If θ : K → K ′ is an isomorphism between two fields K and K ′, then we
define the map θ̃ : K[X]→ K ′[X] by

θ̃(anX
n + · · ·+ a0) = θ(an)Xn + · · ·+ θ(a0), a0, . . . , an ∈ K.

It is clear that θ̃ : K[X]→ K ′[X] is a ring isomorphism (exercise).

Theorem 4.3. Let K and K ′ be fields, and suppose that θ : K → K ′ is an
isomorphism. Let L = K(u) and L′ = K ′(u′) be two finite simple extensions.

Let f = minpolyK(u) and f ′ = minpoly′K(u′), and suppose that f ′ = θ̃(f).
Then there exists a unique isomorphism α : L → L′ such that α|K = θ and
α(u) = u′.

Corollary 4.4. Let L = K(u) and L′ = K(u′) simple extensions of K.
Suppose that u and u′ are algebraic over K and have the same minimal
polynomial. Then there is a unique isomorphism α : L→ L′ such that α(u) =
u′ and α(a) = a for all a ∈ K.

Proof. Take θ = idK in the previous theorem. �

Lemma 4.5. Let θ : K → K ′ be an isomorphism between two fields K
and K ′. Then, for every f ∈ K[X], θ̃ induces a ring homomorphism

φf : K[X]/(f)→ K ′[X]/(θ̃(f)), given by φf (g + (f)) = θ̃(g) + (θ̃(f)).

Proof. Let I = (f) and I ′ = (θ̃(f)). Let π : K ′[X] → K ′[X]/I ′ be the

canonical surjection, given by π(g) = g + I ′. Then π ◦ θ̃ : K[X]→ K[X ′]/I ′

is a surjective homomorphism. We have ker(π ◦ θ̃) = I. Indeed, if h ∈ K[X],

then (π ◦ θ̃)(h) = 0 if and only if θ̃(h) ∈ I ′ iff θ̃(h) is a multiple of θ̃(f) iff h
is a multiple of f iff h ∈ I.

Hence, by the First Isomorphism Theorem, there is an isomorphism

φf : K[X]/I → K ′[X]/I ′

given by
φf (g + I) = (π ◦ θ̃)(g) = θ̃(g) + I ′.
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Proof of Theorem 4.3. First, observe that, if α exists, then it is unique by
Lemma 4.2.

By Lemma 2.13 and the First Isomorphism Theorem, the evaluation map
εu : K[X]→ K(u) yields an isomorphism

ε̄u : K[X]/(f)→ K(u)

given by ε̄u(g + (f)) = εu(g) = g(u). Similarly, there is an isomorphism

ε̄′u : K ′[X]/(f ′)→ K ′(u′)

given by ē′u(h) = h(u′). Finally, Lemma 4.5 yields an isomosphism

φf : K[X]/(f)→ K ′[X]/(f ′)

given by φf (g + (f)) = θ̃(g) + (f ′). Let α = ε̄′u ◦ φf ◦ ē−1u : L → L′. Then
α(u) = ε̄′u ◦ φf (X + (f)) = ε̄′u(X + (f ′)) = u′. Also, for every a ∈ K, we
have α(a) = ε̄′u ◦ φf (a+ (f)) = ε̄′u(θ(a) + (f ′)) = θ(a). Thus α|K = θ. �

Example. The field C is obtained from R by “adding” a root of the poly-
nomial X2 + 1, so C ∼= R[X]/(X2 + 1).




