Representation Theory

K. Magaard

University of Birmingham

Fall Term 2012

Let G be a group, \mathbb{F} a field, and V be a finite dimensional vector space over \mathbb{F}.
All morphisms act on the right unless specified otherwise. So if $f: A \longrightarrow B$ is a morphism (function), then we denote the image of $a \in A$ under f by af.
Definition
An \mathbb{F}-algebra is a finite dimensional \mathbb{F} vector space A which admits a ring structure with identity 1_{A} such that for all $\lambda \in \mathbb{F}$ and $x, y \in A$ we have

$$
\lambda(x y)=(\lambda x) y=x(\lambda y) .
$$

The formula in the definition of an \mathbb{F}-algebra is a compatibility condition between the scalar- and ring- multiplication of A.

We now give examples of F-algebras.
Example 1: The set of all linear transformations from V to itself denoted by $\operatorname{End}(V)$ is an algebra under the operations of addition, scalar multiplication and composition of functions. Specifically we define $\forall \lambda \in \mathbb{F}, x, y \in \operatorname{End}(V), v \in V$ that

$$
\begin{gathered}
v(x+y):=v x+v y \\
v(\lambda x):=\lambda(v x)=(\lambda v) x \\
v(x y):=(v x) y .
\end{gathered}
$$

We denote the set of invertible elements (i.e. those possessing a multiplicative inverse) of $\operatorname{End}(V)$ by $\mathrm{GL}(V)$. We recall that the set of elements in a ring with identity which possess a multiplicative inverse always from a group, called the group of units. Thus we note that $\mathrm{GL}(V)$ is a group.

Example 2: The set $M_{n}(\mathbb{F})$ of all $n \times n$ matrices with coefficients in \mathbb{F} where the operations are addition, scalar multiplication and multiplication of matrices. The group of units in this example is $\mathrm{GL}_{n}(\mathbb{F})$.
We recall that a fundamental result from linear algebra is that every linear transformation between finite dimensional vector spaces can be represented by a matrix. This suggests that End (V) and $M_{n}(\mathbb{F})$ might be isomorphic as algebras. This is in fact true. To see this we recall that representing a linear transformation $x: V_{1} \longrightarrow V_{2}$ by a matrix requires a choice of bases \mathcal{B}_{i} of V_{i}. The $\operatorname{dim}\left(V_{1}\right) \times \operatorname{dim}\left(V_{2}\right)$ matrix $M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(x)$ representing x with respect to the pair of bases $\mathcal{B}_{1}, \mathcal{B}_{2}$ is defined as follows:
Let e_{i} be the i-th basis vector of \mathcal{B}_{1}. Express the image $e_{i} x$ as a linear combination of the elements of $c_{j} \in \mathcal{B}_{2}$, say if $\boldsymbol{e}_{i} \boldsymbol{X}=\alpha_{i, 1} \boldsymbol{C}_{1}+\cdots+\alpha_{i, n} \boldsymbol{C}_{n}$ then define

$$
M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(x):=\left(\alpha_{i, j}\right) .
$$

Theorem

The following are true:

1. If $x, y: V_{1} \longrightarrow V_{2}$ are linear transformations and \mathcal{B}_{i} are bases of V_{i} then

$$
M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(x+y)=M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(x)+M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(y) .
$$

2. If $\alpha \in \mathbb{F}$ and $x: V_{1} \longrightarrow V_{2}$ is a linear transformation and \mathcal{B}_{i} are bases of V_{i} then

$$
M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(\alpha x)=\alpha M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(x) .
$$

3. If V_{3} is a vector space with basis \mathcal{B}_{3} and $y: V_{2} \longrightarrow V_{3}$ is a linear transformation then

$$
M_{\mathcal{B}_{1}}^{\mathcal{B}_{3}}(x \circ y)=M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(x) M_{\mathcal{B}_{2}}^{\mathcal{B}_{3}}(y) .
$$

Definition
Let A and B be \mathbb{F}-algebras. A linear transformation $\Psi: A \longrightarrow B$ which is also a ring homomorphism such that $1_{A} \Psi=1_{B}$ is called an
\mathbb{F}-algebra homomorphism or algebra homomorphism for short.

Now, for example, if in the formulae of Theorem 1.2 above we take $V_{1}=V_{2}=V_{3}$ and $\mathcal{B}_{1}=\mathcal{B}_{2}=\mathcal{B}_{3}$, then then we see that the map $x \Psi_{1}:=M_{\mathcal{B}_{1}}^{\mathcal{B}_{1}}(x)$ is an isomorphism of algebras.
Next we consider the question of how the matrix representing x changes when we change bases. To make this precise we need some notation. Let $\mathcal{B}_{1}=\left\{e_{1}, \ldots, e_{m}\right\}$ and $\mathcal{B}_{3}=\left\{f_{1}, \ldots, f_{m}\right\}$ be bases of V_{1}, \mathcal{B}_{2} and \mathcal{B}_{4} be bases of V_{2} and x a linear transformation $x: V_{1} \longrightarrow V_{2}$ where $m=\operatorname{dim}\left(V_{1}\right)$ and $n=\operatorname{dim}\left(V_{2}\right)$. Now express the vectors $e_{i} \in \mathcal{B}_{1}$ as linear combinations elements from \mathcal{B}_{3}. Say
$e_{i}=\beta_{i, 1} f_{1}+\cdots+\beta_{i, m} f_{m}$ then we define

$$
P:=\left(\beta_{i, j}\right) .
$$

The matrix P is called a base change matrix from basis \mathcal{B}_{1} to basis \mathcal{B}_{3} as its rows express the elements of \mathcal{B}_{1} as linear combinations of the vectors form \mathcal{B}_{3}. As a consequence we have that if $v \in V_{1}$ and

$$
v=\sum_{i=1}^{m} \delta_{i} e_{i}=\sum_{i=1}^{m} \gamma_{i} f_{i}
$$

then

$$
\left[\delta_{1}, \ldots, \delta_{m}\right] P=\left[\gamma_{1}, \ldots, \gamma_{m}\right]
$$

that is P "converts" \mathcal{B}_{1} coordinates into \mathcal{B}_{3} coordinates.

Thus we see that

$$
\left[\delta_{1}, \ldots, \delta_{m}\right]=\left[\gamma_{1}, \ldots, \gamma_{m}\right] P^{-1}
$$

and so P^{-1} "converts" \mathcal{B}_{3} coordinates into \mathcal{B}_{1} coordinates. Similarly we define Q to be the base change matrix from basis \mathcal{B}_{2} to basis \mathcal{B}_{4}.
Theorem
With the notation as above we have

$$
M_{\mathcal{B}_{3}}^{\mathcal{B}_{4}}(x)=P^{-1} M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}(x) Q .
$$

We summarize what we have

Theorem

Let V be an F-vector space of dimension n and $\mathcal{B}_{1}, \mathcal{B}_{3}$ bases of V. Denote the base change matrix from \mathcal{B}_{1} to \mathcal{B}_{3} by P. The following are true:

1. The maps $\Psi_{i}: \operatorname{End}(V) \longrightarrow M_{n}(\mathbb{F})$, with $i \in\{1,3\}$ defined by $x \Psi_{i}=M_{\mathcal{B}_{i}}^{\mathcal{B}_{i}}(x)$ is an algebra isomorphism.
2. For all $x \in \operatorname{End}(V)$ we have

$$
x \Psi_{3}=P^{-1}\left(x \Psi_{1}\right) P
$$

So the part 1 of Theorem 1.5 makes precise the statement that a choice of basis of V yields an \mathbb{F} algebra isomorphism between $\operatorname{End}(V)$ and $M_{n}(F)$, hence also establishes a group isomorphism between $\mathrm{GL}(V)$ and $\mathrm{GL}_{n}(\mathbb{F})$. As $G L_{n}(\mathbb{F})$ is transitive on the set of bases of V, part 2 of Theorem 1.5, in effect, shows that up to conjugation by $\mathrm{GL}_{n}(\mathbb{F})$ the algebra isomorphism is unique.

Our next example of an algebra is the one of primary interest for us. Example 3: The group algebra (of G over \mathbb{F}) $\mathbb{F}[G]$ is the set of "formal \mathbb{F} linear combinations of group elements" namely $\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{F}\right\}$. The operations are as follows: $\forall g, h \in \mathcal{G}, \lambda, \alpha_{g}, \beta_{g} \in \mathbb{F}$

$$
\begin{gathered}
\sum_{g \in G} \alpha_{g} g+\sum_{g \in G} \beta_{g} g:=\sum_{g \in G}\left(\alpha_{g}+\beta_{g}\right) g \\
\lambda \sum_{g \in G} \alpha_{g} g:=\sum_{g \in G}\left(\lambda \alpha_{g}\right) g \\
\left(\sum_{g \in G} \alpha_{g} g\right)\left(\sum_{g \in G} \beta_{g} g\right):=\sum_{g \in G} \gamma_{g} g
\end{gathered}
$$

where $\gamma_{g}:=\sum_{x, y \in G, x y=g} \alpha_{x} \beta_{y}$.
Note that we embed G into $\mathbb{F}[G]$ via $g \longrightarrow \sum_{h \in G} \delta_{g, h} h$. Thus we see that the identity element of G and the identity element of $\mathbb{F}[G]$ are identified in this way. We call the image of G in $\mathbb{F}[G]$ the distinguished basis of $\mathbb{F}[G]$.

Definition

An algebra homomorphism $\rho: \mathbb{F}[G] \longrightarrow M_{n}(\mathbb{F})$ is called a representation of $\mathbb{F}[G] . n$ is called the degree of the representation. We say that two representations ρ_{1}, ρ_{2} of $\mathbb{F}[G]$ are similar if there exists a $g \in \mathrm{GL}_{n}(\mathbb{F})$ such that $\forall x \in \mathbb{F}[G]$ we have $g^{-1}\left(x \rho_{1}\right) g=x \rho_{2}$.

Definition

A group homomorphism $\rho: G \longrightarrow \mathrm{GL}_{n}(\mathbb{F})$ called a representation of
G. We say that two representations ρ_{1}, ρ_{2} of G are similar if there exist $g \in \mathrm{GL}_{n}(\mathbb{F})$ such that $\forall x \in G$ we have $g^{-1}\left(x \rho_{1}\right) g=x \rho_{2}$. Using the identification of G with the distinguished basis of $\mathbb{F}[G]$ we see that a representation of $\mathbb{F}[G]$ induces a representation of G. It is an easy exercise to show the converse. From now on we will use the identification of G and $\mathbb{F}[G]$ representations whenever it is convenient to do so. In light of Theorem 1.5 we see that similarity of representations is just invariance under base change; i.e. that similarity classes are independent of choice of basis of \mathbb{F}^{n}.

We conclude this section with some examples. Let $n \in \mathbb{N}$ and $G=\mathbb{Z} / n \mathbb{Z}$ the cyclic group of order n. Let $i \in \mathbb{C}$ be such that $i^{2}=1$. For $n \in \mathbb{N}$ define $\zeta_{n}:=e^{2 \pi i / n}$. Fix a generator x of G.
Example 1: $\mathbb{F}=\mathbb{C}, \rho_{1, k}: G \longrightarrow G L_{1}(\mathbb{C}), x \rho_{1}=\left[\zeta_{n}^{k}\right]$.
Example 2: $\mathbb{F}=\mathbb{C}, \rho_{2, j, k}: G \longrightarrow G L_{2}(\mathbb{C}), x \rho_{2}=\left(\begin{array}{cc}\zeta_{n}^{j} & 0 \\ 0 & \zeta_{n}^{k}\end{array}\right)$.
Example 3: $\mathbb{F}=\mathbb{Q}, n=3$ resp. $4, \rho_{3}: G \longrightarrow G L_{2}(\mathbb{Q})$,
$x \rho_{3}:=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ resp. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Example 4: $\mathbb{F}=\mathbb{F}_{p}$ a finite field of prime order $p, n=p$, $\rho_{4}: G \longrightarrow G L_{2}(\mathbb{F}), x \rho_{4}:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
Example 5: $\mathbb{F}=\mathbb{F}_{p}$ a finite field of odd prime order $p, n=2 p$,
$\rho_{5}: G \longrightarrow G L_{2}(\mathbb{F}), x \rho_{5}:=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$.
Note that $x \rho_{i}$ is a diagonalizable matrix for $i \leq 3$; i.e. the characteristic of \mathbb{F} is coprime to $|G|$, whereas $x \rho_{i}$ is not diagonalizable for $i>3$; i.e. the characteristic of \mathbb{F} is a divisor of $|G|$. We shall see a generalization of this in the next section, namely Maschke's Theorem

Although the results and definitions of this section hold for general associative algebras with identity, our main examples will be group algebras. Throughout A denotes an associative F-algebra with identity.

Definition

If A is an \mathbb{F} algebra, then an \mathbb{F} vector space V is called an A - module if there exists a map $\psi: V \times A \longrightarrow V$ such that for all $v, w \in V$, $x, y \in A$ and all $\lambda, \mu \in \mathbb{F}$ we have

1. $(\lambda v+\mu w) x=\lambda(v x)+\mu(w x)$,
2. $v(\lambda x+\mu y)=\lambda(v x)+\mu(v y)$,
3. $v(x y)=(v x) y$,
4. $v 1=v$.

If V is an A-module and $x \in A$, then item 1 in the definition above is equivalent to the assertion that the map $x_{V}: V \longrightarrow V$ defined by $v \longrightarrow v x$ is an F-linear transformation; i.e. $x_{V} \in \operatorname{End}(V)$. Another consequence of the definition of A-module is:
Lemma
If V is an A-module, then the map $x \longrightarrow x_{V}$ is an algebra homomorphism.

We denote the image of A in $\operatorname{End}(V)$ by A_{V}.
We now give some examples of A modules.
Example 1: V is an A-module for any subalgebra of $\operatorname{End}(V)$.
Example 2: If $A=M_{n}(\mathbb{F})$, then the space of row vectors of length n over \mathbb{F} is an A-module.
Example 3: Any right ideal M of A is an A-module.
Note that have to verify that M is in fact a vector space. To see this we first note that $\left\{\lambda 1_{A}: \lambda \in \mathbb{F}\right\}$ embeds \mathbb{F} in to the center of A. The center $Z(A)$ of A is defined as expected, namely we define
$Z(A):=\{z \in A: x z=z x \forall x \in A\}$. Now for all $\lambda \in \mathbb{F}$ and all $x \in M$ we have

$$
\lambda x=\left(\lambda 1_{A}\right) x=x\left(\lambda 1_{A}\right)=x \lambda \in M,
$$

showing closure under scalar multiplication.
Example 3' The right ideal A of A is called the regular A-module and is denoted by A°.
Definition
If V and W are A-modules then an A-module homomorphism a linear transformation $\phi: V \longrightarrow W$ such that $\forall x \in A, v \in V$ and $w \in W$ we have $(v \phi) x=(v x) \phi$.

If in the definition above ϕ is an isomorphism, then we say that the A modules V and W are isomorphic.
A primary goal in representation theory is to classify similarity classes of representations.
Recall that if V is a vector space of dimension n, then a basis \mathcal{B} of V defines an algebra isomorphism between $\operatorname{End}(V)$ and $M_{n}(\mathbb{F})$. This shows that similarity classes of A representations are in one to one correspondence with isomorphism classes A modules.

Definition

A subspace U of an A-module V is called an A-submodule if $\forall u \in U, x \in A$ we have $u x \in U$. An A-module V is irreducible if it possesses no proper submodules.

The following lemma gives a connection between module homomorphisms and submodules.
Lemma
If $\phi: V \longrightarrow W$ is a homomorphism of A-modules, then $\operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$ are submodules of V and W respectively.
Proof : Let $u \in \operatorname{Ker}(\phi)$ and $x \in A$. Then $(u x) \phi=(u \phi) x=0 x=0$, showing that $u x \in \operatorname{Ker}(\phi)$. Hence $\operatorname{Ker}(\phi)$ is a submodule of V Now if $u \in \operatorname{Im}(\phi)$ and $x \in A$, then $\exists v \in V$ with $u=v \phi$. Thus

$$
u x=(v \phi) x=(v x) \phi
$$

showing that $\operatorname{Im}(\phi)$ is a submodule of W.
QED

Definition

For A modules V and W the set of A-module homomorphisms from V to W is denoted by $\operatorname{Hom}_{A}(V, W)$.

Note that addition of linear transformations and scalar multiplication turn $\operatorname{Hom}_{A}(V, W)$ into an \mathbb{F} vector space. If $W=V$, then $\operatorname{Hom}_{A}(V, V)$ is a subalgebra of $\operatorname{End}(V)$.

Definition

If B is a subalgebra of A then

$$
C_{A}(B):=\{x \in A: x b=b x \forall b \in B\}
$$

is called the centralizer of B in A.
For example if $B=A$, then, by definition of $Z(A)$, we have that $C_{A}(A)=Z(A)$, the center of A. The next lemma is an exercise in applying the definitions, which we leave for the reader.
Lemma
If V is an A-module, then $\operatorname{Hom}_{A}(V, V)=C_{\operatorname{End}(V)}\left(A_{V}\right)$. Moreover
$A_{V} \subset C_{\mathrm{End}(V)}\left(\operatorname{Hom}_{A}(V, V)\right)=C_{\operatorname{End}(V)}\left(C_{\operatorname{End}(V)}\left(A_{V}\right)\right)$.

We now come to

Lemma (Schur)

If V and W are non-trivial irreducible A-modules, then every element of $\operatorname{Hom}_{A}(V, W)^{*}$ has an inverse in $\operatorname{Hom}_{A}(W, V)$.
Proof : Let $\phi \in \operatorname{Hom}_{A}(V, W)^{*}$. Then $\operatorname{Im}(\phi)$ is a non-trivial submodule of W. As W is irreducible this means that $\operatorname{Im}(\phi)=W$; i.e. ϕ is surjective. Also $\operatorname{Ker}(\phi)$ is a submodule of V which, as V is irreducible, is either 0 or equal to V. As $\operatorname{Im}(\phi)$ is non-trivial we see that $\operatorname{Ker}(\phi) \neq V$. Thus $\operatorname{Ker}(\phi)=0$ proving that ϕ is also injective.

QED

Corollary

If V is an irreducible A-module and \mathbb{F} is algebraically closed, then

$$
\operatorname{Hom}_{A}(V, V) \cong \mathbb{F} \cong Z(\operatorname{End}(V))=\left\{\lambda 1_{V}: \lambda \in \mathbb{F}\right\}
$$

Proof : Clearly $Z(\operatorname{End}(V))=\left\{\lambda 1_{V}: \lambda \in \mathbb{F}\right\} \subset \operatorname{Hom}_{A}(V, V)$. Now let $\phi \in \operatorname{Hom}_{A}(V, V)$ and let λ be an eigenvalue of ϕ. Then
$\phi-\lambda 1_{V} \in \operatorname{Hom}_{A}(V, V)$ as the latter is closed under addition. Thus by Schur's lemma $\phi-\lambda 1_{v}$ is either 0 or invertible. The latter is impossible as $\operatorname{Ker}\left(\phi-\lambda 1_{v}\right) \neq 0$, showing that $\phi=\lambda 1_{v}$.

Definition

An A module is completely reducible if for every submodule W there exists a submodule U such that $V=W \oplus U$.
Remark: If G is the trivial group and $A=\mathbb{F}[G]$, then every A module is completely reducible as every subspace of a vector space has a complement.

Theorem (Maschke)

If G is a finite group and $\operatorname{char}(\mathbb{F})$ is coprime to $|G|$, then all
$\mathbb{F}[G]$-modules are completely reducible.
Proof : Let V be an $\mathbb{F}[G]$ and W be submodule. Let U^{\prime} be some complement of W and let $\pi: V \longrightarrow W$ be the natural projection along U^{\prime} onto W. To be clear, every $v \in V$ can be uniquely expressed as $w+u^{\prime}$ where $w \in W$ and $u^{\prime} \in U^{\prime}$, and we define $v \pi:=w$. Now π is not an $\mathbb{F}[G]$ homomorphism but we can use it to define one namely

$$
v \phi:=\frac{1}{|G|} \sum_{g \in G}((v g) \pi) g^{-1} .
$$

As G is finite $\phi \in \operatorname{End}(V)$. We first show that $\phi \in \operatorname{End}_{\mathbb{F}[G]}(V)$. Let $h \in G$, then

$$
(v \phi) h=\left(\frac{1}{|G|} \sum((v g) \pi) g^{-1}\right) h
$$

$$
=\left(\frac{1}{|G|} \sum_{h g \in G}((v h g) \pi)(h g)^{-1} h\right)=(v h) \phi
$$

Thus ϕ is an $\mathbb{F}[G]$ homomorphism and $\operatorname{Im}(\phi) \subset W$, as W is a submodule. Also if $w \in W$, then

$$
\begin{gathered}
\left.w \phi=\frac{1}{|G|} \sum_{g \in G}((w g) \pi) g^{-1}\right) \\
=\frac{1}{|G|} \sum_{g \in G}(w g) g^{-1}=\frac{|G|}{|G|} w=w .
\end{gathered}
$$

So we see that $v \phi^{2}=w \phi=w$; i.e. $\phi^{2}=\phi$.
Finally we show that $\operatorname{Ker}(\phi) \cap W=0$. To this end let $u \in \operatorname{Ker}(\phi) \cap W$. Then $u \in W$, hence $u=u \phi$. But $u \in \operatorname{Ker}(\phi)$, hence $u=u \phi=0$ which proves that $\operatorname{Ker}(\phi) \cap W=0$. As $\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}(\operatorname{Ker}(\phi))$ we see that $V=W \oplus \operatorname{Ker}(\phi)$. Now everything is proved as $\operatorname{Ker}(\phi)$ is an $\mathbb{F}[G]$ submodule.

QEDMaschke's theorem proves that $\mathbb{F}[G]^{\circ}$ is completely reducible if $\operatorname{char}(\mathbb{F})$ is coprime to $|G|$.

Theorem

An A module is completely reducible if and only if it is generated by its irreducible submodules.
Proof : If V is completely reducible, then let W be the submodule generated by the irreducible submodules of V. By complete reducibility $V=W \oplus U$ for some A submodule U. Now any irreducible submodule of U will, by definition of W, lie in $U \cap W=0$. Thus U contains non nontrivial submodules hence $U=0$. Conversely suppose that V is generated by its irreducible submodules and let W be a the submodule of V. Pick U maximal subject to $W \cap U=0$. This is possible as $\operatorname{dim}(V)$ is finite. We claim that $V=W \oplus U$; else there exists an irreducible submodule M such that $(W \oplus U) \cap M=0$. That implies that $W \cap(U \oplus M)=0$, violating the maximality of U.

Lemma
If V is an A-module generated by irreducible submodules, then V is a direct sum of irreducibles.
Proof : Let W be maximal subject to being a direct sum of irreducibles. If $W \neq V$, then, as V is completely reducible, there exists a submodule U of V such that $V=W \oplus U$. Now if M is a nontrivial irreducible submodule of U,then $W \oplus M$ is a direct sum of irreducibles; violating the maximality of W. So $M=0$ which implies that $U=0$ and hence $V=W$.

We will now prove some general results concerning the representation theory of finite dimensional semisimple algebras. By definition an algebra A is semisimple if A° is completely reducible.

Definition

If V is an A-module and M is a submodule, then we define

$$
\operatorname{Ann}(M):=\{x \in A: m x=0 \forall m \in M\}
$$

the annihilator and

$$
I_{V}(M):=\sum_{M \cong W \subset V} W
$$

to be the isotypic component of M in V
We note that $\operatorname{Ann}(M)$ is an ideal of A and that $I_{V}(M)$ is a direct sum of isomorphic copies of M, and that if $M \not \approx N$ then $I_{V}(M) \cap I_{V}(N)=0$.
Lemma
$I_{V}(M)$ is $\operatorname{Hom}_{A}(V, V)=C_{\text {End }(V)}\left(A_{V}\right)$ invariant.
Proof : If M is irreducible and $\phi \in \operatorname{Hom}_{A}(V, V)$ then either $\operatorname{Ker}\left(\left.\phi\right|_{M}\right)=0$ or M. In the first case $M \cong \operatorname{Im}\left(\left.\phi\right|_{M}\right)$ and hence, by definition, $\operatorname{Im}(\phi) \subset I_{V}(M)$. QEDBy $\mathcal{M}(A)$ we denote the isomorphism classes of irreducibles A modules.

Lemma

If A is a algebra and V is an irreducible A-module, then V is a factor module of A°. If A is semisimple, then V is also a direct summand of A°.
Proof : Let $0 \neq v \in V$ and for $x \in A^{\circ}$ define $x \phi:=v x$. Now for all $y \in A$ we have

$$
x y \phi=v(x y)=(v x) y=(x \phi) y
$$

showing that ϕ is an A-homomorphism. As V is irreducible and $0 \neq v=1_{A} \phi$ we see that $\operatorname{Im}(\phi)=V$ and the first claim follows. If A^{0} is semisimple, then $\operatorname{Ker}(\phi)$ has a complement which must be isomorphic to $\operatorname{Im}(\phi)=V$.

QED

Theorem (Wedderburn)

Let A be a semisimple algebra and let M be an irreducible A-module. The following are true:

1. $I_{A}(M)$ is a minimal ideal of A.
2. If N is irreducible, then $I_{A}(M) \subset \operatorname{Ann}(N)$ unless $M \cong N$.
3. The restriction of the representation of
$\phi: I_{A}(M) \longrightarrow A_{M} \subset \operatorname{End}(M)$ is one to one and onto.
4. $\mathcal{M}(A)$ is a finite set.

Proof: If $x \in A$ then the map $\phi_{x}: A^{0} \longrightarrow A^{0}$ defined by $y \phi_{x}=x y$ lies in $\mathbb{C}_{A}\left(\operatorname{End}\left(A^{\circ}\right)\right)$ as for all $z \in A$ we have
$\left(y \phi_{x}\right) z=(x y) z=x(y z)=(y z) \phi_{x}$. So Lemma 3.2 implies that ϕ_{x} leaves $I_{A}(M)$ invariant, hence is a left ideal of A^{0}. As as every submodule of A^{0} is a right ideal of A° we see that $I_{A}(M)$ is an ideal; proving the first part of 1 .

To prove part 2 note that for irreducible A-modules $M \not \approx N$ we have $I_{A}(N) I_{A}(M) \subset I_{A}(N) \cap I_{A}(M)=0$.
Part 4 is a consequence of Lemma 3.3 and the finite dimensionality of A. Moreover

$$
A=\oplus_{M \in \mathcal{M}(A)} I_{A}(M)
$$

To prove part 3 we note that part 2 implies that for $N \not \equiv M$ we have $I_{A}(N) \subset \operatorname{Ker}(\phi)$ which proves that ϕ is onto. Now suppose that $x \in \operatorname{Ker}(\phi) \cap I_{A}(M)$. Then x annihilates every irreducible A-module and so

$$
x=1_{A} x \in A x=0
$$

proving that ϕ is injective.
Suppose $I \subset I_{A}(M)$ is an ideal of A. Now $I_{M}(A)$ is a direct sum of copies of M, so if $I \neq I_{A}(M)$ then there exists a submodule $M^{\prime} \cong M$ of $I_{A}(M)$ such that M^{\prime} does not lie in I.Thus $I \cap M^{\prime}=0$ as M^{\prime} is irreducible and hence $M^{\prime} I \subset M^{\prime} \cap I=0$. Thus I annihilates M^{\prime} hence if $x \in I$ then $x_{M}=0$. As $x \longrightarrow x_{M}$ is one to one we have that $x=0$.; i.e. $I=0$.

Theorem (Double Centralizer)
If V is an irreducible A-module of a semisimple \mathbb{F}-algebra A, then

$$
\left.A_{V}=C_{\operatorname{End}(V)}\left(\operatorname{Hom}_{A}(V, V)\right)\right)=C_{\operatorname{End}(V)}\left(C_{\operatorname{End}(V)}\left(A_{V}\right)\right)
$$

Proof : We have already seen that $A_{V} \subset C_{\operatorname{End}(V)}\left(C_{\operatorname{End}(V)}\left(A_{V}\right)\right)$. So now suppose $\theta \in C_{\mathrm{End}(V)}\left(C_{\operatorname{End}(V)}\left(A_{V}\right)\right)$. Without loss we may assume that $V \subset I_{A}(V) \triangleleft A$
For $v \in V$ define $\alpha_{v}: V \longrightarrow A$ by $x \alpha_{v}=v x$, as V is an A module $v x \in M$. Also for all $a \in A$ we have that
$(x a) \alpha_{v}=v(x a)=(v x) a=\left(x \alpha_{v}\right) a$ showing that $\alpha_{v} \in C_{\mathrm{End}(V)}\left(A_{V}\right)$.
Thus for all $v, w \in V$ we have

$$
(v w) \theta=\left(w \alpha_{v}\right) \theta=v(w \theta) .
$$

For fixed $w \in V$ we have $A w A<I_{A}(V)$. Let e denote the projection of 1_{A} onto $I_{A}(V)$.As $A w A$ is an ideal and $I_{A}(V)$ is a minimal ideal of A, we see that $e \in A=I_{A}(V)$. So there exist $a_{i}, b_{i} \in A$ such that $e=\sum a_{i} w b_{i}$ so for all $v \in V$ we have

$$
v \theta=v e \theta=\sum\left(v a_{i} w b_{i}\right) \theta=\sum\left(v a_{i}\right)\left(w b_{i}\right) \theta
$$

$$
\sum\left(w b_{i}\right) \alpha_{v a_{i}} \theta=\sum\left(w b_{i}\right) \theta \alpha_{v a_{i}}=\sum\left(v a_{i}\right)\left(\left(w b_{i}\right) \theta\right)=v \sum a_{i}\left(\left(w b_{i}\right) \theta\right) .
$$

We observe that $\sum a_{i}\left(\left(w b_{i}\right) \theta\right) \in A w A=I_{A}(V)$ and thus
$\theta=\sum a_{i}\left(\left(w b_{i}\right) \theta\right) \in I_{A}(V)=A_{M}$. This is what we claimed.
QED
We can now prove the following important corollary which reveals the structure of a semisimple algebra and its representations.

Theorem

Let A be a semisimple \mathbb{F} algebra, where \mathbb{F} is algebraically closed, V be an A-module and let $\mathcal{M}(A)$ be a set of representatives of irreducible A-modules. The following are true:

1. $A_{V}=\operatorname{End}(V)$
2. $\operatorname{dim}\left(A_{V}\right)=\operatorname{dim}\left(I_{A}(V)\right)=\operatorname{dim}(V)^{2}$
3. $I_{A}(V)$ is direct sum of $\operatorname{dim}(V)$ copies of V
4. $\operatorname{dim}(A)=\sum_{V \in \mathcal{M}(A)} \operatorname{dim}(V)^{2}$
5. $\operatorname{dim}(Z(A))=|\mathcal{M}(A)|$

Proof : By the corollary to Schur's Lemma $C_{\operatorname{End}(V)}\left(A_{V}\right)=\mathbb{F} \cdot 1_{v}$.

So by the Double Centralizer Theorem

$$
\operatorname{End}(V)=C_{\operatorname{End}(V)}\left(\mathbb{F} \cdot 1_{V}\right)=C_{\operatorname{End}(V)}\left(C_{\operatorname{End}(V)}\left(A_{V}\right)\right)=A_{V}
$$

which is our first claim. Our second claim follows from part 1 of Theorem 1.5.
The third claim follows from the second and the fact that A°, hence also $I_{A}(V)$, is completely reducible.
The fourth claim follows from the second and from Lemma 3.3. Recall that $A_{V} A_{W}=0$ if $V \nsubseteq W$. So as $A=\oplus_{\mathcal{M}(A)} I_{A}(V)$ we have

$$
Z(A)=\oplus_{\mathcal{M}(A)} Z\left(I_{A}(V)\right)=\mathbb{F}^{|\mathcal{M}(A)|}
$$

and our last claim follows.

Characters

Let G be a group, \mathbb{F} a field, and V be an n-dimensional vector space over \mathbb{F}. We saw in the previous sections that an $\mathbb{F}[G]$-module V together with a basis \mathcal{B} of V gives rise to a representation $\phi: G \longrightarrow \mathrm{GL}_{n}(\mathbb{F})$.If $g \in G$ then recall that the characteristic polynomial of $g \phi$ is defined as

$$
m_{g \phi}(x):=\operatorname{Det}\left(g \phi-x 1_{n}\right)
$$

is invariant under base change; i.e. $\forall P \in \mathrm{GL}_{n}(\mathbb{F})$ we have

$$
\begin{aligned}
& m_{P-1} g \phi P \\
= & \operatorname{Det}\left(P^{-1} g \phi P-x 1_{n}\right)=\operatorname{Det}\left(P^{-1}\left(g \phi-x 1_{n}\right) P\right) \\
& \operatorname{Det}\left(g \phi-x 1_{n}\right) \operatorname{Det}(P)=\operatorname{Det}\left(g \phi-x 1_{n}\right)=m_{g \phi}(x) .
\end{aligned}
$$

Thus we record
Lemma

1. If ϕ and ψ are similar representations of G then $\forall g \in G$ we have $m_{g \phi}(x)=m_{g \psi}(x)$.
2. $\forall g, h \in G$ we have $m_{g \phi}(x)=m_{h^{-1} g h \phi}(x)$.

Clearly the coefficients of the minimal polynomial are invariants of the representation of of G. We recall that the constant coefficient of $m_{g \phi}(x)$ is equal to $(-1)^{n} \operatorname{Det}(g \phi)$, the determinant of $g \phi$, and that the coefficient of x^{n-1} in $m_{g \phi}(x)$ is $-\operatorname{Tr}(g \phi)$, the trace of $g \Phi$.

Definition

If V is an $\mathbb{F}[G]$-module and \mathcal{B} be a basis for V, then the function $\chi: \mathbb{F}[G] \longrightarrow \mathbb{F}$ defined by $\chi(g)=\operatorname{Tr}\left(M_{\mathcal{B}}^{\mathcal{B}}(g)\right)$ is called the \mathbb{F} character of V. Correspondingly if ϕ is a representation then the F-charcter of ϕ is the function $\chi(g)=\operatorname{Tr}(g \phi)$. A function from G to \mathbb{C} which is constant on conjugacy classes of G is a class function.
We if $\Phi: G \longrightarrow G L(V)$ is representation with character χ we say that V is a module affording χ.
Evidently by 2 of Lemma $4.1 \mathbb{F}$-characters of G are class functions.
We also have the following

Lemma

If χ is an \mathbb{F} character, then $\chi(g)$ is independent of choice of basis and choice of conjugate.

The lemma guarantees that characters of modules and representations are well-defined. We call a character irreducible if its underlying representation is irreducible. The degree of a character χ is $\chi(1)$. We note that if $(\operatorname{char}(\mathbb{F}),|G|)=1$, then the degree of an \mathbb{F}-character is equal to the dimension of an $\mathbb{F}[G]$-module affording it. The lemma guarantees that characters of modules and representations are well-defined.
By $\operatorname{Irr}(G)$ we denote the set of all irreducible \mathbb{C} characters of G and note that $||\operatorname{Irr}(G)|=| \mathcal{M}(\mathbb{C}[G) \mid$.
The the character of the regular $\mathbb{C}[G]^{0}$-module is called the regular character and is denoted by ρ. Form corollary ?? we see that

$$
|G|=\sum_{\mathcal{M}(\mathbb{C}[G])} \chi_{i}(1)^{2}
$$

If $\left\{C_{1}, \ldots, C_{k}\right\}$ are the conjugacy classes of G then we define the class sum of C_{i} by $\bar{C}_{i}:=\sum_{g \in C_{i}} g \in \mathbb{C}[G]$.

Theorem

The class sums form a basis of $Z(\mathbb{C}[G])$.
Proof : As conjugation by $g \in G$ permutes the elements of C_{i} we see that $\bar{C}^{g}=\bar{C}$, which shows that $\bar{C} \in Z(\mathbb{C}[G])$.
Now let $z \in Z(\mathbb{C}[G])$ and let α_{g} be the coefficient of g in z. As $z=z^{h}=\sum_{g \in G} \alpha_{g} g^{h}$ we see by comparing coefficients that $a_{g}=a_{g^{h}}$. So the coefficients are constant on elements of a conjugacy class. Thus z is a linear combination of class sums, showing that the class sums span $Z(\mathbb{C}[G])$.As conjugacy classes are disjoint,linear independence of them is guaranteed.

QED

We already saw that the number of similarity classes of $\mathbb{C}[G]$ modules is equal to $\operatorname{dim}(Z(\mathbb{C}[G]))$ and thus the theorem yields the following fundamental corollary.

Corollary

The number of similarity classes of irreducible $\mathbb{C}[G]$-modules is equal to the number conjugacy classes of G.

Corollary

G is abelian if and only if $\chi(1)=1$ for all $\chi \in \operatorname{Irr}(G)$.
Proof : Let $k=|\mathcal{M}(\mathbb{C}[G])|=|\operatorname{Irr}(G)|=\operatorname{dim}(Z(\mathbb{C}[G])$, which, by the above, is equal to the number of conjugacy classes of G.Now G is abelian if and only if the $|G|=k$.
On the other hand by Wedderburn's theorem we have $|G|=\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2} \geq k=|G|$. As $\chi(1) \geq 1$ we see that $\chi(1)=1$ for all $\chi \in \operatorname{Irr}(G)$ if and only if $|G|=k$ if and only if G is abelian. QED
We call a character of degree 1 a linear character.

Corollary

The number of $\chi \in \operatorname{Irr}(G)$ such that $\chi(1)=1$ is equal to $\left[G: G^{\prime}\right]$, the index of the commutator subgroup of G in G.
Proof : Let ℓ be the number of linear irreducible characters of G. The factor goup G / G^{\prime} is abelian, so by the above, $\ell \geq\left[G: G^{\prime}\right]$.Conversely if $\chi(1)=1$ and Φ is a representation affording χ, then $\operatorname{Im}(\Phi) \subset \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{*}$ is abelian. Thus $G^{\prime} \subset \operatorname{Ker}(\Phi)$;showing that Φ can be interpreted as a map from G / G^{\prime} to $\mathrm{GL}_{1}(\mathbb{C})$. Thus $\ell \leq\left[G: G^{\prime}\right]$ which yields our claim.

Lemma

The elements of $\operatorname{Irr}(G)$ are distinct.
Proof : If $\left\{V_{1}, \ldots, V_{k}\right\}=\mathcal{M}(\mathbb{C}[G])$, then recall that
$\mathbb{C}[G]=\oplus_{i=1}^{k} I_{\mathbb{C}[G]}\left(V_{i}\right)$.
By e_{i} we denote the projection of 1 onto $I_{\mathbb{C}[G]}\left(V_{i}\right)$ and by χ_{i} we denote the character of V_{i}.
As the $I_{\mathbb{C}[G]}\left(V_{i}\right)$ are non-intersecting ideals we see that $e_{i} e_{j}=0$ and thus $e_{i} \mid v_{j}=0$, so $\chi_{i}\left(e_{j}\right)=\delta_{i, j} \operatorname{dim}\left(V_{i}\right)$ showing that $\forall i \neq j$ we have $\chi_{i} \neq \chi_{j}$.

Lemma

Every class function ϕ can be uniquely expressed as

$$
\phi=\sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \chi .
$$

Moreover ϕ is a character if and only if each a_{χ} is a positive integer.
Proof : It suffices to show that $\operatorname{Irr}(G)$ is a basis for the vector space of class functions. We have already seen that $|\operatorname{Irr}(G)|$ is equal to the number of conjugacy classes of G and thus equal to the dimension of the space of class functions. So it suffices to prove that $\operatorname{Irr}(G)$ is linearly independent. To this end suppose that $\sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \chi=0$, then

$$
0=\sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \chi\left(e_{\chi}\right)=a_{\chi}
$$

$\forall \chi \in \operatorname{Irr}(G)$, showing linear independence.
If χ is a character then there is a module V affording ϕ.By Maschke's theorem V is a direct sum of irreducibles.Moreover if a_{i} is the number of times that the irreducible V_{i} (affording character χ_{i}), then $\chi=\sum_{i} a_{i} \chi_{i}$ showing that a_{i} is a non-negative integer. On the other hand if a class function $\psi=\sum_{i} a_{i} \chi_{i}$ with $a_{i} \in \mathbb{N}$, then the module $W=\oplus_{i} V_{i}^{a_{i}}$ affords ψ.

Corollary

Two representations ρ_{1} and ρ_{2} of G are similar if and only if their characters are equal.
Proof: We have already seen that if ρ_{1} and ρ_{2} are similar then their characters are equal. The converse follows from the lemma.
We will now work towards the orthogonality relations which requires some lemmas involving the regular character.
Lemma
Let ρ be the regular character of G. We have

$$
\rho=\sum_{\chi \in \operatorname{Irr}(G)} \chi(1) \chi .
$$

Proof : This a reformulation of Wedderburn's theorem.

Lemma

Let ρ be the regular character of G. If $g \in G$, then $\rho(g)=\delta_{1, g \mid}|G|$.
Proof : In the regular representation the matrix representing g is a permutation matrix. The result follows as the trace of a permutation matrix is the number of fixed points. In the regular representation only the identiy element has fixed points. The number of fixed points of the identity element is the group order. QEDRecall that e_{i} is the projection of the identy of the groups algebra onto the $j^{\prime \prime}$ th isotypic component.

Lemma

$e_{i}=\frac{1}{|G|} \sum_{g \in G} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) g$.
Proof : Write $e_{i}=\sum a_{g} g$. By the previous two lemmas we have

$$
\sum_{j} \chi_{j}(1) \chi_{j}\left(e_{i} g^{-1}\right)=\rho\left(e_{i} g^{-1}\right)=a_{g}|G| .
$$

If ψ is a representation affording ρ, then

$$
\left(e_{i} g^{-1}\right) \psi=\left(e_{i} \psi\right)\left(g^{-1} \psi\right)=\delta_{i, j}\left(g^{-1} \Psi\right) .
$$

So $a_{g}|G|=\chi_{i}(1) \chi_{i}\left(g^{-1}\right)$ and the claim follows.

Theorem (Generalized Orthogonality)

For all $h \in G$ we have

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g h) \chi_{j}\left(g^{-1}\right)=\delta_{i, j} \frac{\chi_{i}(h)}{\chi_{i}(1)} .
$$

Proof : Recall that $e_{i} e_{j}=\delta_{i, j} e_{i}$. Substituting the formula for e_{i} given in the previous lemma into this formula yields

$$
\begin{gathered}
\left(\frac{1}{|G|} \sum_{g \in G} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) g\right)\left(\frac{1}{|G|} \sum_{g \in G} \chi_{j}(1) \chi_{j}\left(g^{-1}\right) g\right) \\
=\delta_{i, j} \frac{1}{|G|} \sum_{g \in G} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) g
\end{gathered}
$$

The coefficient for h on the right hand side is

$$
\delta_{i, j} \frac{1}{|G|} \chi_{i}(1) \chi_{i}\left(h^{-1}\right)
$$

whereas the coefficient for h on the left hand side is

$$
\frac{\chi_{i}(1)^{2}}{|G|^{2}} \sum_{g \in G} \chi_{i}\left(\left(h g^{-1}\right)^{-1}\right) \chi_{j}\left(g^{-1}\right)\left(\left(h g^{-1}\right) g\right)
$$

Equating, re-aranging and substituting h for h^{-1} yields the desired formula.

QED
Corollary (First Orthogonality Relation)

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \chi_{j}\left(g^{-1}\right)=\delta_{i, j}
$$

Proof: In the theorem above, set $h=1$.

Lemma

Let Ψ be a representation affording the character $\chi, g \in G$ of order n. The following are true:

1. $g \Psi$ is similar to a diagonal matrix with diagonal entries $\epsilon_{1}, \ldots, \epsilon_{k}$, where $k=\chi(1)$,
2. $\forall i$ we have $\epsilon_{i}^{n}=1$,
3. $\chi(g)=\sum_{i} \epsilon_{i}$ and $|\chi(g)| \leq \chi(1)$,
4. $\chi\left(g^{-1}\right)=\overline{\chi_{i}(g)}$.

Proof : The minimal polynomial of g is a divisor of $x^{n}-1$. Over \mathbb{C} the polynomial $x^{n}-1$ has no multiple roots. Thus the minimal polynomial of g has no multiple roots and each root is an n-th root of unity.So $g \psi$ is diagonalizable and parts 1,2 and the first part of 3 follow. The second part of 3 follows from the first and the triangle inequality. The last part follows from 1 and 3.

QED
In light of part 4 we can rewrite the first orthogonality relation as

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \overline{\chi_{j}(g)}=\delta_{i, j}
$$

Definition

For class functions θ and ψ of G we define a hermitian inner product via

$$
[\theta, \psi]=\frac{1}{|G|} \sum_{g \in G} \theta(g) \overline{\psi(g)}
$$

The first orthogonality relation states that $\operatorname{Irr}(g)$ is an orthonormal basis of the space of class functions on G.
Lemma
For class functions θ_{i} and ψ_{i} of G and $a_{1}, a_{2} \in \mathbb{C}$, the following are true

1. $[\theta, \psi]=\overline{[\psi, \theta]}$,
2. $[\psi, \psi] \geq 0$ with equality if and only if $\psi=0$,
3. $\left[a_{1} \theta_{1}+a_{2} \theta_{2}, \psi\right]=a_{1}\left[\theta_{1}, \psi\right]+a_{2}\left[\theta_{2}, \psi\right]$,
4. $\left[\theta, a_{1} \psi_{1}+a_{2} \psi_{2}\right]=\overline{a_{1}}\left[\theta, \psi_{1}\right]+\overline{a_{2}}\left[\theta, \psi_{2}\right]$.

Recall that g^{G} denotes the conjugacy class of g in G.
Theorem (Second Orthogonality Relation)
Let $g, h \in G$. We have

$$
\sum_{\chi \in \operatorname{Irr}(G)} \chi(g) \overline{\chi(h)}=\delta_{g^{G}, h^{G}}\left|C_{G}(g)\right|
$$

Proof : Let g_{1}, \ldots, g_{k} be conjugacy class representatives.Let $X:=\left(\chi_{i}\left(g_{j}\right)\right)$; i.e. the character table.Let $D:=\delta_{i, j}\left|g_{i}^{G}\right|$.By the first orthogonality relation we have

$$
\delta_{i, j}|G|=\sum_{g \in G} \chi_{i}(g) \overline{\chi_{j}(g)}=\sum_{\nu=1}^{k}\left|g_{\nu}^{G}\right| \chi_{i}\left(g_{\nu}\right) \overline{\chi_{j}\left(g_{\nu}\right)}
$$

We can put these k^{2} equations into matrix form to obtain

$$
|G| I_{k}=X D \bar{X}^{t}
$$

where I_{k} means $k \times k$ identity matrix and X^{t} means the transpose of the matrix X.

In a matrix algebra one sided inverses are also two sided inverses so we have

$$
|G| I_{k}=D \bar{X}^{t} X
$$

which yields

$$
\delta_{i, j}|G|=\sum_{\nu=1}^{k}\left|g_{i}^{G}\right| \chi_{\nu}\left(g_{i}\right) \overline{\chi_{\nu}\left(g_{j}\right)} .
$$

Using that $\left|g_{i}^{G}\right|=\frac{|G|}{\left|C_{G}\left(g_{i}\right)\right|}$ now yields the result.
QED

As an application of the orthogonality relations we will now compute the character table of the alternating group A_{4}. We know that A_{4} has four conjugacy classes represented by (), (1,2)(3,4), (1,2,3), (1,3,2) and that $\mathbb{Z} / 3 \mathbb{Z} \cong A_{4} /\left[A_{4}, A_{4}\right]$. This information yields the following portion of the character table.

g_{i}	()	$(1,2)(3,4)$	$(1,2,3)$	$(1,3,2)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	12	4	3	3
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω

where $\omega=e^{2 \pi i / 3}$.

As A_{4} has four conjugacy classes the number of irreducible characters of A_{4} is also four. So we are missing a fourth irreducible character χ_{4}. Now

$$
\chi_{4}(())^{2}=\left|A_{4}\right|-\chi_{1}(())^{2}-\chi_{2}(())^{2}-\chi_{3}(())^{2}=12-1-1-1=9 ;
$$

showing that $\chi(())=3$.Also

$$
\begin{gathered}
\left|\chi_{4}((1,2,3))\right|^{2} \\
=\left|C_{A_{4}}((1,2,3))\right|-\left|\chi_{1}((1,2,3))\right|^{2}-\left|\chi_{2}((1,2,3))\right|^{2}-\left|\chi_{3}((1,2,3))\right|^{2} \\
=3-1-1-1=0
\end{gathered}
$$

and

$$
\begin{gathered}
\left|\chi_{4}((1,3,2))\right|^{2} \\
=\left|C_{A_{4}}((1,2,3))\right|-\left|\chi_{1}((1,2,3))\right|^{2}-\left|\chi_{2}((1,2,3))\right|^{2}-\left|\chi_{3}((1,2,3))\right|^{2} \\
=3-1-1-1=0 .
\end{gathered}
$$

So $\chi_{4}((1,2,3))=0=\chi_{4}((1,3,2))$.

Finally we compute that

$$
\begin{gathered}
\left|\chi_{4}((1,2)(3,4))\right|^{2} \\
=\left|C_{A_{4}}((1,2)(3,4))\right|-\left|\chi_{1}((1,2)(3,4))\right|^{2}-\left|\chi_{2}((1,2)(3,4))\right|^{2}-\left|\chi_{3}((1,2)(3,4))\right|^{2} \\
=4-1-1-1=1 .
\end{gathered}
$$

So $\chi_{4}((1,2)(3,4))= \pm 1$. To determine the sign we use the first orthogonality relation.

$$
0=\left[\chi_{1}, \chi_{4}\right]=\frac{1}{12}((1 \times 1 \times 3)+(3 \times 1 \times \pm 1)+(4 \times 1 \times 0)+(4 \times 1 \times 0)) .
$$

This yields $\chi_{4}((1,2)(3,4))=-1$ and so the character table of A_{4} is

g_{i}	()	$(1,2)(3,4)$	$(1,2,3)$	$(1,3,2)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	12	4	3	3
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω
χ_{4}	3	-1	0	0

where $\omega=e^{2 \pi i / 3}$.

Definition

The kernel $\operatorname{Ker}(\chi)$ of a character χ is the set of $g \in G$ for which $\chi(g)=\chi(1)$.
The center $Z(\chi)$ of a character χ is the set of $g \in G$ for which $|\chi(g)|=\chi(1)$.
It is easy to see that if Ψ is a representation affording χ, then
$\operatorname{Ker}(\chi)=\operatorname{Ker}(\Psi)$ and $Z(\Psi)$ is the preimage of $(Z(\operatorname{Im}(\Psi)))$ in G.
We note that any character χ of a factor group G / K can be extended to a character ψ of G by defining $\psi(g):=\chi(K g)$.
A character χ is faithful if $\operatorname{Ker}(\chi)=1$.
Lemma
$Z(\chi) / \operatorname{Ker}(\chi)$ is cyclic if χ is a faithful irreducible character of G.

Proof : Let ψ be a representation affording χ and V the corresponding module. The image of G acts irreducibly.Thus $Z(\chi) / \operatorname{Ker}(\chi) \Psi \subset C_{\mathrm{End}(V)}(G \Psi)=\mathbb{C}$. The last equality is the corollary to Schur's lemma. Our claim follows if we can show that a finite subgroup of \mathbb{C}^{*} is in fact cyclic. To see this let $z \in \mathbb{C}^{*}$ be an element of finite order. Writing $z=r e^{i \theta}$ in polar form shows that $z^{k}=1$ implies that $r^{k}=1$ and $e^{i \theta k}=1$. Thus $r=1$ and θ is an integer multiple of $2 \pi / k$. Now we note that $\left\langle e^{2 \pi / k}, e^{2 \pi / m}\right\rangle=\left\langle e^{2 \pi / \ell}\right\rangle$ where $\ell=\operatorname{lcm}(k, n)$. Thus any finite subgroup of \mathbb{C}^{*} is cyclic and our claim follows. QEDWe conclude this section with a few more examples of characters.

If $\operatorname{dim}(v)=n$ with basis $\left\{v_{1}, \ldots, v_{n}\right\}$, then S_{n} embeds naturally into $G L_{n}(\mathbb{C})$ via $v_{i}(\sigma \Psi)=v_{i \sigma}$. The matrix $\sigma \Psi$ is called a permutation matrix. Note that it has only one non-zero entry per row and column. For $x \in \Omega$ and $\sigma \in S_{n}$ we define
$\operatorname{Fix}_{\Omega}(\sigma):=\{x \in \Omega x \sigma=x\}$. When it's clear which set is being acted on we drop the subscript Ω. We now record
Lemma
If $\Psi: S_{n} \longrightarrow \mathrm{GL}_{n}(\mathbb{C})$ and $\sigma \in S_{n}$, then $\operatorname{Tr}(\sigma)=|\operatorname{Fix}(\sigma)|$.
So if H is a subgroup of G of index n then the permutation action of G on the right cosets of H defines a map $\Psi_{1}: G \longrightarrow S_{n}$. The composition of Ψ_{1} with the map ψ in the lemma above is a representation of G by permutation matrices. We call the corresponding module a permutation module and the corresponding character permutation character.

We recall that every transitive permutation action of a group G is equivalent to the action of G on the right cosets of a subgroup H via right multiplication. Thus permutation modules are a rich source of representations and characters which are relatively easy to handle from a computational point of view.
For example values of the permutation character ψ_{3} of S_{3} acting on $\{1,2,3\}$ are
$\psi_{3}(())=3, \psi_{3}((1,2))=1, \psi_{3}((1,2,3))=0$
and the values of the permutation character ψ_{4} of and S_{4} acting on $\{1,2,3,4\}$ are
$\psi_{4}(())=4, \psi_{4}((1,2)(34))=0, \psi_{4}((1,2))=2, \psi_{4}((1,2,3))=1$, $\psi_{4}((1,2,3,4))=0$.

Integrality

Definition

An algebraic integer is a complex number that is a root of a monic integer coefficient polynomial.

Lemma

An algebraic integer which is a rational number is an integer.
Proof: If α is an algebraic integer in \mathbb{Q}, then $\exists r . s \mathbb{Z}$ such that $\alpha=\frac{r}{s}$. As α is an algebraic integer there exists $p(x) \in \mathbb{Z}[x]$ with $p(a)=0$.If $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then evaluation of $p(x)$ at α and rewriting leads to

$$
s\left(a_{0} s^{n-1}+a_{1} s^{n-2} r+\cdots+a_{n-1} r^{n-1}\right)=-r^{n}
$$

As $(s, r)=1$, Euclids lemma implies $s=1$, which is our claim. QED

Lemma

Let $\alpha_{1}, \ldots, \alpha_{n}$ be algebraic integers and let S be the smallest subring of \mathbb{C} containing $\alpha_{1}, \ldots, \alpha_{n}$. Then there exists a subset Y of S such that every element of S is a \mathbb{Z}-linear combination of elements of elements of Y.
Proof : Let $p_{i} \in Z[x]$ of degree n_{i} such that $p\left(\alpha_{i}\right)=0$.So $\alpha_{i}^{n_{i}}$ is a \mathbb{Z} linear combination of lower powers of α_{i}. Set $Y_{i}=\left\{1 \alpha_{i}, \alpha_{i}^{2}, \ldots, \alpha_{n_{i}-1}\right.$ and set $Y:=\left\{\prod_{i=1}^{r} \beta_{i} \mid \beta_{i} \in Y_{i}\right.$. So as every α_{i}^{k} with $k \geq n_{i}$ can be expressed as a \mathbb{Z}-linear combination of Y_{i} it is now clear that every monomial $\prod_{i} \alpha_{i}^{k_{i}}$ is a \mathbb{Z}-linear combination of elements of Y. Thus R,the \mathbb{Z}-span R of Y,is a subring and hence $S=R$; which is our claim.

Lemma

Let $\mathbb{Z} \subset S \subset \mathbb{C}$. If S is a finitely generated \mathbb{Z}-module, then every element of S is an algebraic integer.
Proof : Let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ be a \mathbb{Z}-spanning set of S and s be in S. As usual s acts on S via right multiplication. And more explicitly we have

$$
y_{i} s=\sum_{j=1}^{n} a_{i, j} y_{j}
$$

for some $a_{i, j} \in \mathbb{Z}$.So if $v=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and $A=\left(a_{i, j}\right)$ we have $v s=v A$ which is equivalent to $v(s-A)=0$ which implies that

$$
0=\operatorname{Det}(s l-A) .
$$

As $\operatorname{Det}(x I-A) \in \mathbb{Z}[x]$ we have that s is an algebraic integer. The claim follows as s was arbitrary.

Corollary

Sums and products of algebraic intergers are algebraic integers.
Proof : If α, β are algebraic integers, then by Lemma 5.3 there exists a subring S containing α, β which is a finitely genrated \mathbb{Z}-module. Evidently $\alpha+\beta, \alpha \beta \in S$ so Lemma 5.4 gives the claim.

QED
Corollary
If χ is a character of a finite group, then $\chi(g)$ is an algebraic integer. Proof : $\chi(g)$ is a sum of roots of unity and each such is an algebraic integer. So the previous corollary gives the claim.

Corollary

If $g \in G$ of order n and for all k with $(k, n)=1$ there exists $h \in G$ such that $g^{k}=g^{h}$, then for every $\chi \in \operatorname{Irr}(G)$ we have $\chi(g) \in \mathbb{Z}$.
Proof : We leave the proof as an exercise for the reader.Hint: The generators of the cyclic group $\langle g\rangle$ are the elements of the form g^{k} with $(k, n)=1$.
We now define for all $\chi \in \operatorname{Irr}(G)$ the function $\omega_{\chi}: Z(\mathbb{C}[G]) \longrightarrow \mathbb{C}$. Let ψ be a representation affording χ and $z \in Z(\mathbb{C}[G])$.then we define the function ω_{χ} via the formula $z \psi=\omega_{\chi}(z) I_{\chi(1)}$. By the corollary to Schur's lemma this is well defined. We drop the subscript χ from ω_{χ} if there is no ambiguity about χ. If $C=g^{G}, \bar{C}$ the class sum of C then

$$
\chi(1) \omega_{\chi}(\bar{C})=\chi(\bar{C})=\sum_{x \in \bar{C}} \chi(x)=|\bar{C}| \chi(g) .
$$

Thus

$$
\omega_{\chi}(\bar{C})=\frac{\chi(g)|\bar{C}|}{\chi(1)} .
$$

Theorem
If $\chi \in \operatorname{Irr}(G)$, and $\bar{C} \in \mathbb{C}[G]$ is a class sum, then $\omega_{\chi}(\bar{C})$ is an algebraic integer.
Proof: Let $\bar{C}_{1}, \ldots, \bar{C}_{k}$ denote the class sums and recall that

$$
\bar{C}_{i} \bar{C}_{j}=\sum_{\nu} a_{i, j, \nu} \bar{C}_{\nu}
$$

where $a_{i, j, \nu} \in \mathbb{Z}$.As ω_{χ} is an algebra homomorphism we have

$$
\omega_{\chi}\left(\bar{C}_{i}\right) \omega_{\chi}\left(\bar{C}_{j}\right)=\sum_{\nu} a_{i, j, \nu} \omega_{\chi}\left(\bar{C}_{\nu}\right)
$$

Now $\omega_{\chi_{1}}(1)=1$ so $S=\mathbb{Z}\left[\omega_{i}\left(\bar{C}_{j}\right)\right]$ is a subring of \mathbb{C} containing \mathbb{Z} and is a finitely generated \mathbb{Z}-module.Thus Lemma 5.4 yields the claim. QED

Theorem

Let $\chi \in \operatorname{Irr}(G)$. If $(\chi(1),|C|)=1$ and $g \in C$, the either $g \in Z(\chi)$ or $\chi(g)=0$.
Proof : By hypothesis there exist u, v such that $u \chi(1)+v|C|=1$.So

$$
\frac{\chi(g)}{\chi(1)}-u \chi(g)=\frac{\chi(g)(1-u \chi(1)}{\chi(1)}=v \frac{\chi(g)|C|}{\chi(1)} .
$$

Clearly $u \chi(g)$ is an algebraic integer and $\frac{\chi(g)|C|}{\chi}$ is an algebraic integer by the previous theorem. Thus $\alpha:=\chi(g) / \chi(1)$ is an algebraic integer.If $g \notin \boldsymbol{Z}(\chi)$, then $|\alpha|<1$. Let \mathcal{O} be the orbit of α under the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(e^{2 \pi i /|g|}\right): \mathbb{Q}\right)$. Then $\prod_{\beta \in \mathcal{O}} \beta \in \mathbb{Q}$ as it is invariant under $\operatorname{Gal}\left(\mathbb{Q}\left(e^{2 \pi i /|g|}\right): \mathbb{Q}\right)$. Also $0 \leq\left|\prod_{\beta \in \mathcal{O}}\right| \beta<1$ as $|\beta|<1$.So $\prod_{\beta \in \mathcal{O}} \beta \in \mathbb{Z}$ hence is equal to 0 ;which means all factors are equal to zero. Thus $0=\alpha=\chi(g) / \chi(1)$ and $\chi(g)=0$ as claimed.

Theorem

If G is a nonabelian simple group, then $1^{G}=\{1\}$ is the only conjugacy class of prime power size.
Proof: Suppose that for some $g \in G$ we have $\left|g^{G}\right|=p^{a}$ for some prime p. Let $\chi_{1} \neq \chi \in \operatorname{Irr}(G)$.As G is simple and nonabelian, $\operatorname{Ker}(\chi)=1=Z(\chi)$.If $(p, \chi(1))=1$, then $\chi(g)=0$ by our previous theorem. So, recalling that ρ is the regular character we have

$$
0=g \rho=\sum_{\chi \in \operatorname{Irr}(G)} \chi(1) \chi(g)=1+\sum_{\chi \in \operatorname{Irr}(G): p \mid \chi(1)} \chi(1) \chi(g) .
$$

But that means that

$$
-1=p\left(\sum_{\chi \in \operatorname{Irr}(G): p \mid \chi(1)} \chi(1) \chi(g) / p\right) .
$$

Thus $-1 / p$ is an algebraic integer;a contradiction.

Theorem

If p, q are prime integers and G is a group of order $p^{a} q^{b}$, then G is solvable.
Proof : We induct on $|G|$.If N has a proper normal subgroup, then by inductive hypothesis both G / N and N are solvable which implies that G is solvable.
So without loss we may assume that G is simple.Let P be a Sylow p-subgroup of G and let $g \in Z(P)$. Then $P \subset C_{G}(g)$ which shows that $\left|g^{G}\right|=q^{c}$ for some $0 \leq c \leq b$.Clearly $c \neq 0$ as $Z(G)=1$. The previous theorem rules out all other possibilities. Thus G is not simple and the theorem follows.

Theorem
If $\chi \in \operatorname{Irr}(G)$, then $\chi(1)$ is a divisor of $|G|$.
Proof : Let $\bar{C}_{1}, \ldots, \bar{C}_{k}$ be the class sums.Recall the first orthogonality relation

$$
\begin{gathered}
|G|=\sum_{g \in G} \chi(g) \chi\left(g^{-1}\right) \\
=\sum_{i=1}^{k}\left|\bar{C}_{i}\right| \chi\left(g_{i}\right) \chi\left(g_{i}^{-1}\right)=\sum_{i=1}^{k} \chi(1) \omega_{\chi}\left(\bar{C}_{i}\right) \chi\left(g_{i}^{-1}\right) .
\end{gathered}
$$

But now $|G| / \chi(1)$ is a rational algebraic integer; i.e. an integer. QED We now see that the character degrees of a p-groups are necessarily of degree a power of p.

Consider D_{16}, the dihedral group of order 16. The character degrees are of the form 2^{a} where $0 \leq a \leq 4$. As $\left[D_{16}, D_{16}\right]=\mathbb{Z} / 4 \mathbb{Z}$ we see that D_{16} has 4 linear characters. From the second orthogonality relation we have that

$$
12=16-4=\sum_{\chi \in \operatorname{Irr}(G): \chi(1) \neq 1} \chi(1)^{2} .
$$

Now $4^{2}=16$, hence all nonlinear characters have degree two,and there are precisely three such.
As another example consider the simple group A_{5} which has 5 conjugacy classes and order 60. What are its character degrees? As A_{5} is simple,the restriction of any nontrivial A_{5} charater to A_{4} must contain the faithful irreducible character of A_{4} so the degree of all the irreducible nontrivial A_{5} characters must be at least 3.From the second orthogonality we know that $\chi(1) \leq 7$.Now 7 is ruled out by the theorem above and $\sqrt{\left(60-1^{2}-6^{2}\right) / 3}<3$, leaving the following possible character degrees $\{1,3,3,4,5\}$; we check that $60=1^{1}+3^{2}+3^{2}+4^{2}+5^{2}$.

Tensor products and the representation ring

Let U, V and W be vector spaces with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ repsectively $\left\{w_{1}, \ldots, w_{m}\right\}$.
Definition
A map $f: V \times W \longrightarrow U$ is called bilinear is it is linear in each argument.

Definition
The tensor product $V \otimes W$ is a vector space together with a bilinear map

$$
\iota: V \times W \longrightarrow V \otimes W
$$

such that if U is another vector space and $f: V \times W \longrightarrow U$ is bilinear, then there exists a unique linear map $g: V \otimes W \longrightarrow U$ such that $f=\iota g$.We define $v_{i} \otimes w_{j}:=\left(v_{i}, w_{j}\right) \iota$

Lemma
The tensor product $V \otimes W$ exists, is unique and the set $\left\{v_{i} \otimes w_{j}\right\}$ is a basis for $V \otimes W$.

Proof : Existence: Let M be a space of dimension $n m$ with basis $e_{i, j}$. The linear map $\left(v_{i}, w_{j}\right) \mapsto \boldsymbol{e}_{i, j}$ can be extended to a bilinear map ι by defining $\left(\sum a_{i} v_{i}\right) \otimes\left(\sum b_{j} w_{j}\right) \mapsto \sum_{i, j} a_{i} b_{j} e_{i, j}$. Now and if $f: V \times W \longrightarrow M^{\prime}$ is bilinear, then the unique map g from M to M^{\prime} such that $f=\iota g$ must be the map $e_{i, j}$ to $\left(v_{i}, w_{j}\right) f$.
Uniquness: If M_{1}, M_{2} are tensor products of V and W with corresponding bilinear maps ι_{1}, ι_{2}, then there exists maps $g_{1}: M_{1} \longrightarrow M_{2}$ and $g_{2}: M_{2} \longrightarrow M_{1}$ such that $\iota_{2}=\iota_{1} g_{1}$ and $\iota_{1}=\iota_{2} g_{2}$. So

$$
\iota_{2} I_{M_{2}}=\iota_{2}=\iota_{1} g_{1}=\iota_{2} g_{2} g_{1},
$$

and thus by uniqueness

$$
I_{M_{2}}=g_{2} g_{1}
$$

.Similarly we get $I_{M_{1}}=g_{1} g_{2}$ and so uniquess is now proved.
The last part is implicit in the existence proof as $e_{i, j}$ is a basis for M.
QED

Lemma

If V and W are G-modules with bases as above, then G acts on
$V \otimes W \operatorname{via}\left(v_{i} \otimes w_{j}\right) g:=v_{i} g \otimes w_{j} g$.
The proof is left as an exercise.
Lemma
If V, W are G-modules affording characters χ and ϕ respectively, then the G-module $V \otimes W$ affords the charcter $\chi \phi$; where
$\chi \phi(g):=\chi(g) \psi(g)$.
Proof: If $v_{i} g=\sum a_{i, j} v_{j}$ and $w_{k} g=\sum b_{k, \ell} w_{\ell}$,then

$$
\left(v_{i} \otimes w_{k}\right) g=v_{i} g \otimes w_{k} g=\sum_{j, \ell} a_{i, j} b_{k, \ell} v_{j} \otimes w_{\ell}
$$

So the trace of the matrix representing g with respect to the basis $\left\{v_{i} \otimes w_{k}\right\}$ is

$$
\sum_{i, k} a_{i, i} b_{k, k}=\left(\sum_{i} a_{i, i}\right)\left(\sum_{k} b_{k, k}\right)
$$

QED

Lemma

If V is an $\mathbb{F}[G]$-module, then $V^{*}:=\operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$ becomes an
$\mathbb{F}[G]$-module via: For $\alpha \in V^{*}$ we define αg via $v(\alpha g)=\left(v g^{-1}\right) \alpha$ for all $v \in V$. .
Proof : Let $v \in V, \alpha \in V^{*}$ and $g, h \in G$.We have

$$
v(\alpha(g h))=\left(v h^{-1} g^{-1}\right) \alpha=\left(v h^{-1}\right)(\alpha g)=v((\alpha g) h)
$$

proving that $\alpha(g h)=(\alpha g) h$.
QEDThe module V^{*} is the dual $\mathbb{F}[G]$-module of V
Lemma
If v_{1}, \ldots, v_{n} is a basis for V, then the set $v_{1}^{*}, \ldots, v_{n}^{*}$ where $v_{i} v_{j}^{*}:=\delta_{i, j}$ is a basis for V^{*}
Proof: If $v^{*} \in V^{*}$, then $v^{*}=\sum_{i}\left(v_{i} v^{*}\right) v_{i}^{*}$ showing that $v_{1}^{*}, \ldots, v_{n}^{*}$ spans V^{*}. Now if $\sum_{i} a_{i} v_{i}^{*}=0$, then

$$
0=v_{i} \sum_{i} a_{i} v_{i}^{*}=a_{i},
$$

showing that $v_{1}^{*}, \ldots, v_{n}^{*}$ is linearly independent.
QEDThe set
$v_{1}^{*}, \ldots, v_{n}^{*}$ is called the dual basis of V.

Lemma

If V is a $\mathbb{C}[G]$-module affording χ, then the character χ^{*} afforded $V *$ is equal to $\bar{\chi}$.
Proof: Find a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ with respect to which g acts diagonaly, say $v_{i} g=\lambda_{i}$. Then

$$
v_{j}\left(v_{i}^{*} g\right)=\left(v_{j} g^{-1}\right) v_{i}^{*}=\lambda_{j}^{-1} \delta_{i, j},
$$

showing that g acts diagonaly on V^{*} with respect to the dual basis.
Also, as the λ_{i} are roots of unity, we have $\chi^{*}(g)=\lambda_{1}^{-1}+\cdots+\lambda_{n}^{-1}=\overline{\lambda_{1}}+\cdots+\overline{\lambda_{n}}=\bar{\chi}$.

Lemma

If χ, ψ and ϕ are characters, then

1. $[\chi, \psi \phi]=[\chi \bar{\psi}, \phi]$
2. If $\chi \in \operatorname{Irr}(g)$, then $1=\left[\chi \chi^{*}, 1_{G}\right]=[\chi, \chi]$

Proof : Evidently the second part follows from the first. For the first part note that

$$
\begin{aligned}
& {[\chi, \psi \phi]=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g) \phi(g)} } \\
= & \frac{1}{|G|} \sum_{g \in G}(\chi(g) \overline{\psi(g)}) \overline{\phi(g)}=[\chi \bar{\psi}, \phi]
\end{aligned}
$$

QEDWe now see that characters of a group can be added and multiplied component wise to yield new characters. Also the set of class functions is a ring under the operations of component wise addition and multiplication.

Definition

The representation ring $R_{\mathbb{C}}(G)$ of a group G is the subring $\mathbb{Z}[\operatorname{Irr}(\mathbb{C}[G]]$ of the ring of class functions of G.
The additive group of $R_{\mathbb{C}}(G)$ is an example of a Grothendieck group built from the monoid whose elements are the isomorphism classes of $\mathbb{C}[G]$-modules. The representation ring is usually defined by starting with the Grothendieck of the monoid of isomorphism classes of $\mathbb{C}[G]$-modules, and extending that to a ring structure where the mutliplication operation is the tensor product.Our definition is equivalent to the standard definition. The elements in $R_{\mathbb{C}}(G)$ which are not positive linear combinations of irreducible characters are called virtual characters.
The next theorem can be interpreted as general result concerning the multiplication in the representation ring of a general group.lt is also a useful tool for generating new characters from old and can, in practice, be used to help compute character tables.

Theorem

(Brauer) Let ψ be a faithful character of a finite group G. Suppose that ψ takes on exactly m distinct values. Then for every $\chi \in \operatorname{Irr}(G)$ there exists some $0<k \leq m$ such that $\left[\chi, \psi^{k}\right] \neq 0$.
Proof: Let $\left\{\psi(1)=\alpha_{1}, \ldots, \alpha_{m}\right\}=\operatorname{Im}(\psi) \subset \mathbb{C}$. Define
$\boldsymbol{G}_{i}:=\left\{\boldsymbol{g} \in \boldsymbol{G}: \psi(g)=\alpha_{i}\right\}$.So $\boldsymbol{G}_{1}=\operatorname{Ker}(\psi)$.
Now let $\chi \in \operatorname{Irr}(G)$ and let $\beta_{i}=\sum_{g \in G_{i}} \overline{\chi(g)}$. Then

$$
\left[\psi^{k}, \chi\right]=\frac{1}{|G|} \sum_{i=1}^{m}\left(\alpha_{i}\right)^{j} \beta_{i}
$$

If χ is not a consituent of ψ^{j} for all $j<m$, then

$$
\left[\beta_{1}, \ldots, \beta_{m}\right]\left(\alpha_{i}^{j}\right)=0
$$

.But $\left(\alpha_{j}^{j}\right)$ is a Vandermonde matrix hence its determinant is $\pm \prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right) \neq 0$. Thus $b_{i}=0$ for all i. But $\beta_{1}=\chi(1) \neq 0 ; \mathbf{a}$ contradiction.

QEDWe remark that the fact that every irreducible character is a constituent of the regular character is a special case of Brauers theorem above.

We conclude this section with
Theorem
Let $G=H \times K$, then $\operatorname{Irr}(G)=\operatorname{Irr}(H) \times \operatorname{Irr}(K)$.
Proof : Let $\psi_{1}, \psi_{2} \in \operatorname{Irr}(H)$ and $\chi_{1}, \chi_{2} \in \operatorname{Irr}(K)$. Then

$$
\begin{gathered}
{\left[\psi_{1} \times \chi_{1}, \psi_{2} \times \chi_{2}\right]=\frac{1}{|H||K|} \sum_{(h, k)} \psi_{1}(h) \chi_{1}(k) \overline{\psi_{2}(h) \chi_{2}(k)}} \\
= \\
\left(\frac{1}{|H|} \sum_{h \in H} \psi_{1}(h) \overline{\psi_{2}(h)}\right)\left(\frac{1}{|K|} \sum_{k \in K} \chi_{1}(k) \overline{\chi_{2}(k)}\right)=\left[\psi_{1}, \psi_{2}\right]\left[\chi_{1}, \chi_{2}\right]
\end{gathered}
$$

Thus the characters $\psi_{i} \times \chi_{i}$ are irreducible and distinct. Now we compute that

$$
\begin{aligned}
& \sum_{\psi \times \chi \in \operatorname{Irr}(H) \times \operatorname{Irr}(K)} \psi \times \chi(1)=\sum_{\psi \times \chi} \psi(1)^{2} \chi(1)^{2} \\
= & \left(\sum_{\psi \in \operatorname{Irr}(H)} \psi(1)^{2}\right)\left(\sum_{\chi \in \operatorname{Irr}(K)} \chi(1)^{2}\right)=|H||K|=|G|,
\end{aligned}
$$

showing that every character is of the desired form.

Involutions and the Brauer-Fowler Thereom

We now want to use characters to count involutions in finite groups and prove the Brauer-Fowler theorem which provides about half of the philosophical underpinning of the classification of the finite simple groups. The other half off course being the Odd Order Theorem by Feit and Thompson.
We define

$$
\Theta_{n}(g):=\left|\left\{x \in G \mid x^{n}=g\right\}\right|
$$

and observe that Θ_{n} is a class function and that $\Theta_{2}(1)$ counts the number of elments of order at most 2 in G. Thus $\Theta_{2}(1)=1+t$ where t is the number of involutions in G.

Lemma
If $(n,|G|)=1$, then $\Theta_{n}(g)=1$ for all $g \in G$.
Proof : Let $m \in \mathbb{Z}$ be such that $n m=1 \bmod |G|$,then if $h^{n}=k^{n}$ we have

$$
h=h^{n m}=\left(h^{n}\right)^{m}=\left(k^{n}\right)^{m}=k^{n m}=k
$$

and so the map $x \longrightarrow x^{n}$ is injective. But as G is a finite set the map must also be surjective and the claim follows.

QED

As Θ_{n} is a class function it uniquely expressible as a linear combination of irreducibles; i.e., we have

$$
\Theta_{n}=\sum_{\chi \in \operatorname{Irr}(G)} \nu_{n}(\chi) \chi
$$

Lemma
$\nu_{n}(\chi)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{n}\right)$.
Proof : The orthogonality relations give

$$
\nu_{n}(\chi)=\left[\Theta_{n}, \chi\right]=\frac{1}{|G|} \sum_{g \in G} \Theta_{n}(g) \overline{\chi(g)} .
$$

Now $\Theta_{n}(g) \overline{\chi(g)}=\sum_{h \in G: h^{n}=g} \overline{\chi\left(h^{n}\right)}$ so we get

$$
\nu_{n}(\chi)=\frac{1}{|G|} \sum_{h \in G: h^{n}=g} \overline{\chi\left(h^{n}\right)}
$$

Replacing h by h^{-1} yields the claim.
For a class function ϕ define $\phi^{(n)}(g):=\phi\left(g^{n}\right)$. So the previous lemma is the assertion that $\nu_{n}(\chi)=\left[\phi^{(n)}, 1_{G}\right]$.

Theorem

(Frobenius-Schur) If $\chi \in \operatorname{Irr}(G)$, then

1. $\chi^{(2)}$ is the difference of two characters,
2. $\nu_{2}(\chi) \in\{-1,0,1\}$,
3. $\nu_{2}(\chi) \neq 0$ if and only if $\chi(g) \in \mathbb{R}$ for all $g \in G$.

Proof : Let V be a $\mathbb{C}[G]$-module affording χ. Let $W=V \otimes V$ and let $\tau: W \longrightarrow W$ be the linear transformation defined by $v \otimes W \tau=w \otimes v$. Note that $\tau^{2}=1$ and thus τ has at most two eigenvalues, namely ± 1. The 1 eigenspace of τ is called the symmetric square of V and is denoted by W_{S} whereas the 1 eigenspace of τ is called the alternating square of V and is denoted by W_{A}. If $\operatorname{dim}(V) \geq 2$, and if $v, w \in V$ are linearly independent, then $0 \neq v \otimes w+w \otimes v \in W_{S}$ whereas $0 \neq v \otimes w-w \otimes v \in W_{A}$. Now we observe that τ is a $\mathbb{C}[G]$ homomorphism as

$$
(v \otimes w) \tau g=w g \otimes v g=(v g \otimes w g) \tau=(v \times w) g \tau
$$

So W_{S} and W_{A} are $\mathbb{C}[G]$-modules with corresponding characters χ_{S} and χ_{A} and

$$
\chi^{2}=\chi_{S}+\chi_{A}
$$

Let v_{1}, \ldots, v_{n} be a basis for V. Then the set $e_{i, j}:=v_{i} \otimes v_{j}-v_{j} \otimes v_{i}$ where $j>i$ is a basis for W_{A}. If $g \in G$ and $v_{i} g=\sum_{j} \alpha_{i, j} v_{j}$, then

$$
\begin{gathered}
e_{i, j} g=v_{i} g \otimes v_{j} g-v_{j} g \otimes v_{i} g \\
=\sum_{r, s}\left(\alpha_{i, r} \alpha_{j, s}-\alpha_{j, r} \alpha_{i, s}\right) v_{r} \otimes v_{s}=\sum_{r<s}\left(\alpha_{i, r} \alpha_{j, s}-\alpha_{j, r} \alpha_{i, s}\right) e_{r, s} .
\end{gathered}
$$

Thus

$$
\chi_{A}(g)=\sum_{i<j}\left(\alpha_{i, i} \alpha_{j, j}-\alpha_{i, j} \alpha_{j, i} .\right.
$$

So

$$
\begin{aligned}
& 2 \chi_{A}(g)=\sum_{i \neq j}\left(\alpha_{i, i} \alpha_{j, j}-\alpha_{i, j} \alpha_{j, i}\right. \\
= & \left(\sum_{i} \alpha_{i, i}\right)\left(\sum_{j} \alpha_{j, j}\right)-\sum_{i, j} \alpha_{i, j} \alpha_{j, i} .
\end{aligned}
$$

Which proves

$$
2 \chi_{A}(g)=\chi(g)^{2}-\chi\left(g^{2}\right)=\chi^{2}(g)-\chi^{(2)}(g)
$$

Rewriting yields our first claim.

Now

$$
\nu_{2}(\chi)=\left[\chi^{(2)}, 1_{G}\right]=\left[\chi^{2}, 1_{G}\right]-2\left[\chi_{A}, 1_{G}\right] .
$$

χ is real valued if and only if $\chi=\bar{\chi}$. So if χ is not real valued, then

$$
0=[\chi, \bar{\chi}]=\left[\chi^{2}, 1_{G}\right]=\left[\chi_{S}, 1_{G}\right]+\left[\chi_{A}, 1_{G}\right],
$$

which implies that

$$
\left[\chi_{S}, 1_{G}\right]=0=\left[\chi_{A}, 1_{G}\right]
$$

and thus $\nu_{2}(\chi)=0$. On the other hand if χ is real valued, then

$$
1=[\chi, \bar{\chi}]=\left[\chi^{2}, 1_{G}\right]=\left[\chi_{S}, 1_{G}\right]+\left[\chi_{A}, 1_{G}\right] .
$$

If $\left[\chi_{S}, 1_{G}\right]=1$ then $0=\left[\chi_{A}, 1_{G}\right]$ and thus $\nu_{2}(\chi)=1-2 \times 0=1$. Or if $\left[\chi_{S}, 1_{G}\right]=0$ then $1=\left[\chi_{A}, 1_{G}\right]$ and thus $\nu_{2}(\chi)=1-2 \times 1=-1$. The proof is now complete.
A direct application of the Frobenius-Schur Theorem is a character theoretic formula for the number of involutions in a finite group.

Corollary

If G has exactly t involutions, then

$$
1+t=\nu_{2}(\chi)=\Theta_{2}(\chi)=\sum_{\chi \in \operatorname{Irr}(G)} \nu_{2}(\chi) \chi_{1} .
$$

The number $\nu_{2}(\chi)$ is called the Frobenius-Schur indicator. Form our setup the following is clear
Lemma
Let $\chi \in \operatorname{Irr}(G)$. Then

$$
\left[1_{G}, \chi_{S}\right]+\left[1_{G}, \chi_{A}\right]=\left[1_{G}, \chi^{2}\right]=\left[\overline{\chi^{2}}, 1_{G}\right]=\left[\overline{\chi S}, 1_{G}\right]+\left[\overline{\chi_{A}}, 1_{G}\right]
$$

Recall that $\bar{\chi}$ is the character of the dual of V. Now V^{*} is the set of 1 -forms on V and so $V^{*} \otimes V^{*}$ is the set of two forms of V. The symmetric 2 -forms are symmetric bilinear forms whereas the anti-symmetric 2 -forms are the alternating forms (also known as symplectic forms). The stabilizer in $\mathrm{GL}_{n}(\mathbb{C})$ of a non-degenerate quadratic form is an orthogonal group, whereas the stabilizer in $\mathrm{GL}_{n}(\mathbb{C})$ of a non-degenerate alternating form is a symplectic group. So if ψ is a representation affording χ and $\nu_{2}(\chi)=1$, then $\operatorname{Im}(\Psi)$ is contained in an orthogonal group, and if $\nu_{2}(\chi)=-1$, then $\operatorname{Im}(\Psi)$ is contained in an symplectic group.

Corollary
If $\chi \in \operatorname{Irr}(G)$ and $\left[1_{G}, \chi_{S}\right]=1$ respectively $\left[1_{G}, \chi_{A}\right]=1$, then the G-invariant quadratic repsectively G-invariant symplectic form is non-degenerate.
Proof : If V is a G-module affording χ and $f: V \times V \longrightarrow \mathbb{C}$ a bilinear G-inavriant map;i.e. $f(v, w)=f(v g, w g)$ for all $v, w \in V$ and all $g \in G$. So $v \in V^{\perp}$ iff $f(v, w)=0$ for all $w \in V$ iff $0=f(v g, w g)$ for all $w g \in W$ iff $v g \in V^{\perp}$. So V^{\perp} is a G-submodule of V. As G acts irreducibly on V is is the case either $V=V^{\perp}$ or that $V^{\perp}=0$. In the former case $f(v, w)=0$ for all $v, w \in V$ i.e. f is trivial and in the second case f is non-degenerate.

Lemma
If $a_{1}, \ldots, a_{n} \in \mathbb{R}$, then

$$
\sum_{i} a_{i}^{2} \geq \frac{1}{n}\left(\sum a_{i}\right)^{2}
$$

Proof : This a special case of Schwarz' inequality

$$
\left(\sum_{i} a_{i} b_{i}\right)^{2} \leq\left(\sum a_{i}^{2}\right)\left(\sum_{i} b_{i}^{2}\right)
$$

obtained by setting all $b_{i}=1$.
QED
Theorem
Let G be a group of even order n and exactly t involutions. Set $\alpha=(n-1) / t$. The following are true

1. There exists $1 \neq g \in G$, with $\left[G: C_{G}(g)\right] \leq \alpha^{2}$.
2. There exists $1_{G} \neq \chi \in \operatorname{Irr}(G)$, with $\chi=\bar{\chi}$ and $\chi(1) \leq \alpha$.

Proof : By RV we denote the non-trivial real valued irreducible characters of G. By Corollary 7.4 we have

$$
0<(n-1) / \alpha=t \leq \sum_{R V} \chi(1)
$$

Thus we see that $|R V| \geq 1$. Thus

$$
t^{2} \leq\left(\sum_{\chi \in R V} \chi(1)\right)^{2} \leq|R V| \sum_{\chi \in R V} \chi(1)^{2} \leq(|R V|(n-1))
$$

As $t=(n-1) / \alpha$ this shows that

$$
n-1 \leq|R V| \alpha^{2} .
$$

Hence

$$
\sum_{R} V \chi(1)^{2} \leq|R V| \alpha^{2} .
$$

Thus for some $\chi \in R V$ we have $\chi(1) \leq \alpha$; proving part 2. Now $|R V| \leq(k-1)$, where $k=|\operatorname{Irr}(G)|$. So

$$
n-1 \leq|R V| \alpha^{2} . \leq(k-1) \alpha^{2} .
$$

Thus not all non-identity classes of \mathbf{G} can be larger that α^{2} and part 1 follows.

QED

Theorem

(Brauer-Fowler) Let $m \in \mathbb{N}$. There exist at most finitely many simple groups containing an involution with centralizer of order at most m.
Proof : If G is simple of order n, then G contains at least n / m
involutions and hence $(n-1) / t=\alpha<m$. Thus there exists $1 \neq g \in G$ with $1<\left[G: C_{G}(g)\right]<m^{2}$. Thus G embeds into $A_{m^{2}-1}$. QED

For example G is simple and $x \in G$ is an involution such that $\left|C_{G}(x)\right|=4$, then G is a subgroup of A_{15}. Note that A_{5} is a simple group of order 60 such that the centralizer of every involution has order 4.
Theorem
(Feit-Thompson) Every finite group of odd order is solvable. In particular nonabelian simple groups possess involutions.

The proof of the Feit-Thompson is over 200 pages long. The first part restricts the structure of the normalizers of p-subgroups, that is the local subgroups, of a mimimal simple nonabelian group G of odd order. The local analysis is then exploited in the character theoretic analysis which culminates in the establishing the existence of two local maximal solvable subgroups of G. The final contradiciton is a 25 page generator and relation calculation showing that $G=1$.
The classification of the finite simple groups is organized around the analysis of involution centralizers. The exisiting proof is over 15000 pages long and spread out over 100+ books and journal articles.It is an ongoing effort of high current interest to simplify the existing proof and to give an account of the classification in under 5000 pages.
The series of problems is desigend to establish
Theorem
If G is a simple group which possesses an involution centralizer of order 4 , then $G \cong A_{5}$.

Induced characters, Frobenius reciprocity, permutation characters.

We have already seen that if $N \triangleleft G$ then $\operatorname{Irr}(G / N)$ embeds into $\operatorname{Irr}(G) . \operatorname{In}$ this section we begin to relate characters and class functions of H and G where H is a subgroup of G. This is a subtle business and is an active area of modern research. However, there are off course many classical results some of which we will now explore.

Lemma

If ψ is a class function of G and H is a subgroup of G, then $\left.\psi\right|_{H}$ is a class function of H. Moreover if ψ is a character and ψ is a representation affording ψ, then ψ_{H} is the charcter of H afforded by $\left.\Psi\right|_{H}$.
Proof: Clear

Definition

For $H \subset G$ and a class function ψ of H define

$$
\psi \uparrow \uparrow^{G}:=\frac{1}{|H|} \sum_{x \in G} \phi^{o}\left(x g x^{-1}\right)
$$

where $\phi^{0}(y)=\psi(y)$ if $y \in H$ and 0 otherwise. The class function $\psi \uparrow^{G}$ is called the induced class function.
Clearly $\psi \uparrow^{G}$ is a class function of G and moreover $\psi \uparrow^{G}(1)=[G: H] \psi(1)$. The formula in the definition of above can be rewritten as

$$
\psi \uparrow^{G}=\sum_{t \in T} \phi^{o}\left(\operatorname{tgt}^{-1}\right)
$$

where T is a right transversal of H in G;i.e., T is a set of right coset representatives of H in G.

Theorem

(Frobenius Reciprocity) If H is a subgroup of G and ψ, χ are class functions of H and G respectively, then

$$
\left[\psi \uparrow^{G}, \chi\right]=[\psi, \chi \mid H] .
$$

Proof: We have

$$
\left[\psi \uparrow^{G}, \chi\right]=\frac{1}{|G|} \sum_{g \in G} \psi^{G} \uparrow^{G}(g) \chi(g)=\frac{1}{|G||H|} \sum_{g \in G} \sum_{x \in G} \psi^{o}\left(x g x^{-1}\right) \chi(g)
$$

Now set $y=x g x^{-1}$ and observe that $\chi(g)=\chi(y)$ to see that

$$
\left[\psi \uparrow^{G}, \chi\right]=\frac{1}{|G||H|} \sum_{y \in G} \sum_{x \in G} \psi^{o}(y) \chi(y)=\frac{1}{|H|} \sum_{y \in H} \psi(y) \chi(y)=[\psi, \chi \mid H] .
$$

Corollary

If H is a subgroup of G and $\psi \in \operatorname{Irr}(H)$, then there exists $\chi \in \operatorname{Irr}(G)$ such that ψ is a constituent of $\left.\chi\right|_{H}$.
Proof : Let χ be an irreducible constituent of $\psi \uparrow^{G}$, then

$$
0 \neq\left[\psi \uparrow^{G}, \chi\right]=\left[\psi,\left.\chi\right|_{H}\right] .
$$

Before we give examples of induced characters we want to reformulate the definition of induced class function in a slightly more convenient way. To this end we assume that H is a subgroup of G and that ψ is a character of H. Now if $g \in G$, then $g^{G} \cap H$ is a union of H conjugacy classes and let's say that these are represented by $x_{1}, \ldots, x_{m} \in H$. We have

$$
\psi \uparrow^{G}(g)=\frac{1}{|H|} \sum_{x \in G} \psi^{o}\left(x g x^{-1}\right)=\left|C_{G}(g)\right| \sum_{i=1}^{m} \frac{\psi\left(x_{i}\right)}{\left|C_{H}\left(x_{i}\right)\right|}
$$

Just like tensoring known irreducibles leads to new irreducible characters so does and induction of irreducibles of subgroups. We illustrate the latter to compute the character tables of D_{10} and A_{5}.First we consider the character table of D_{10}. The conjugacy classes of D_{10} (as a subgroup of S_{5}) are ()$, x:=(2,5)(3,4), y:=(1,2,3,4,5)$, $(1,3,5,2,4)$ with centralizer orders $10,2,5$ and 5 respectively. Let H be the Sylow 5 -subgroup of D_{10}. Let $\zeta_{5}:=e^{2 \pi i / 5}$. We compute that

$$
\begin{gathered}
1_{H} \uparrow^{D_{10}}(())=10 / 5=2 \\
1_{H} \uparrow^{D_{10}}(x)=0
\end{gathered}
$$

$$
1_{\nu} \uparrow D_{10}(v)=5 \times(1+1) / 5=2
$$

This yields

g_{i}	()	$(1,2)(3,4)$	$(1,2,3,4,5)$	$(1,3,5,2,4)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	10	2	5	5
χ_{1}	1	1	1	1
χ_{2}	1	-1	1	1
χ_{3}	$?$	$?$	$?$	$?$
χ_{4}	$?$	$?$	$?$	$?$

where ? denotes yet to be determined entries.

Next we induce the linear character λ of H whose at y is ζ_{5}. We compute

$$
\begin{gathered}
\lambda_{H} \uparrow^{D_{10}}(())=10 / 5=2 \\
\lambda_{H} \uparrow^{D_{10}}(x)=0 \\
\lambda_{H} \uparrow^{D_{10}}(y)=5\left(\zeta_{5}+\zeta_{5}^{4}\right) / 5=\left(\zeta_{5}+\zeta_{5}^{4}\right) \\
\lambda_{H} \uparrow^{D_{10}}\left(y^{2}\right)=5\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right) / 5=\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right)
\end{gathered}
$$

As $\lambda_{H} \uparrow^{D_{10}}$ is clearly not a linear combination of χ_{1} and χ_{2} we can deduce that $\lambda_{H} \uparrow^{D_{10}}$ must be irreducible. Next we see that $\overline{\lambda_{H} \uparrow^{D_{10}}} \neq \lambda_{H} \uparrow^{D_{10}}$ which yields our last irreducible. Thus the character table of D_{10} is

g_{i}	()	$(1,2)(3,4)$	$(1,2,3,4,5)$	$(1,3,5,2,4)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	10	2	5	5
χ_{1}	1	1	1	1
χ_{2}	1	-1	1	1
χ_{3}	2	0	a	\bar{a}
χ_{4}	2	0	\bar{a}	a

where $a=\zeta_{5}+\zeta_{5}^{4}$.

Now we turn to the character table of A_{5}. Recall that the conjugacy class representatives of A_{5} are (), (1,2)(3,4), (1,2,3), (1,2,3,4,5), and ($1,3,5,2,4$), with centralizer orders $60,4,3,5$, and 5 repsectively. The permutation character ρ_{5} has values $[5,1,2,0,0]$ and $[4,0,1,-1,-1]=\rho_{5}-\chi_{1} \in \operatorname{Irr}\left(A_{5}\right)$.Recall that we know aleady that the character degrees of A_{5} are 1,3,3,4 and 5. We record what we have in the table below.

g_{i}	()	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4,5)$	$(1,3,5,2,4)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	60	4	3	5	5
χ_{1}	1	1	1	1	$?$
χ_{2}	3	$?$	$?$	$?$	$?$
χ_{3}	3	$?$	$?$	$?$	$?$
χ_{4}	4	0	1	-1	-1
χ_{5}	5	$?$	$?$	$?$	$?$

where ? denotes yet to be determined entries.

The normalizers of the Sylow 2, 3, and 5-subgroups of A_{5} are A_{4}, D_{6} and D_{10} respectively.
We want to induce the trivial character of D_{10}.Now by Sylow's Theorem $(1,2)(3,4)^{A_{5}} \cap D_{10}=(1,2)(3,4)^{D_{10}}$.As the Sylow 5 -subgroup of A_{5} is abelian conjugacy is determined in the normalizer. So $1_{D_{10}} \uparrow^{A_{5}}(())=6$,

$$
\begin{aligned}
& 1_{D_{10}} \uparrow_{A_{5}}((1,2)(3,4))=4 \times 1_{D_{10}}((1,2)(3,4)) / 2=2, \\
& 1_{D_{10} \uparrow \uparrow_{5}}((1,2,3))=0,1_{D_{10} \uparrow A_{5}}((1,2,3,4,5))=5 \times 1 / 5=1 \text { and } \\
& 1_{D_{10}} \uparrow \uparrow_{5}((1,3,5,2,4))=5 \times 1 / 5=1 . \text { So }
\end{aligned}
$$

$$
1_{D_{10}} \uparrow^{A_{5}}=[6,2,0,1,1] .
$$

Now the inner product of the character with itself is

$$
\left[1_{D_{10}} \uparrow^{A_{5}}, 1_{D_{10}} \uparrow^{A_{5}}\right]=\frac{1}{60}(36+15 \times 4+12 \times 1+12 \times 1)=2
$$

and

$$
\left[1_{D_{10}} \uparrow^{A_{5}}, \chi_{1}\right]=\frac{1}{60}(6+15 \times 2+12 \times 1+12 \times 1)=1 .
$$

So now we have that $[5,1,-1,0,0]=1_{D_{10}} \uparrow^{A_{5}}-\chi_{1} \in \operatorname{Irr}\left(A_{5}\right)$ and we record our currect statement of affairs in

g_{i}	()	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4,5)$	$(1,3,5,2,4)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	60	4	3	5	5
χ_{1}	1	1	1	1	1
χ_{2}	3	$?$	$?$	$?$	$?$
χ_{3}	3	$?$	$?$	$?$	$?$
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

Now we need to determine the character values of χ_{2} and χ_{3}. To this end we observe that $\left.\chi_{2}\right|_{A_{4}}$ and $\left.\chi_{3}\right|_{A_{4}}$ must contain a faithful constituent. But now we see from our earlier calculation that the only faithful A_{4} character of is of degree 3.Thus
$\chi_{2}(())=\chi_{3}(())=3, \chi_{2}((1,2)(3,4))=-1=\chi_{3}((1,2),(3,4))$. and $\chi_{2}((1,2,3))=0=\chi_{3}((1,2,3))$. Thus we have

g_{i}	()	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4,5)$	$(1,3,5,2,4)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	60	4	3	5	5
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	a	b
χ_{3}	3	-1	0	c	d
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

where a, b, c, d are yet to be determined.

To find the last four entries we restrict χ_{2} to D_{10} which yields the D_{10} character $[3,-1, a, b]$ which due to the simplicity of A_{5} must be faithful. So it must be the sum of the second and either the third or fourth irreducible character of D_{10}. Whichever it is, it is, the resulting A_{5} character will not be self dual. Thus without loss we can set it up that $a=1+\left(\zeta_{5}+\zeta_{5}^{4}\right)$ and $b=1+\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right)=\bar{a}$.Then taling duals yields that $c=b$ and $d=a$. So the character table of A_{5} is

g_{i}	()	$(1,2)(3,4)$	$(1,2,3)$	$(1,2,3,4,5)$	$(1,3,5,2,4)$
$\left\|C_{G}\left(g_{i}\right)\right\|$	60	4	3	5	5
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	a	\bar{a}
χ_{3}	3	-1	0	\bar{a}	a
χ_{4}	4	0	1	-1	-1
χ_{5}	5	1	-1	0	0

where $a=1+\zeta_{5}+\zeta_{5}^{4}$.

We now turn to the module theoretic interpretation of character induction.

Definition

Let V be an $\mathbb{F}[G]$-module. We call $V=\oplus_{i=1}^{k} V_{i}$ an imprimitivity decomposition if for all $g \in G$ and all V_{i} we have $V_{i} g=V_{j}$ and for all V_{i}, V_{j} there exists $h \in G$ such that $V_{i} h=V_{j}$. If V has an imprimitivity decomposition we say that the G-module V is imprimitive. If V does not possess an imprimitivity decomposition then we say that V is a primitive G-module.
Assume now that the $\mathbb{F}[G]$-module V has impimitivity decomposition $\oplus_{i=1}^{k} V_{i}$. Let $H:=\left\{h \in G: V_{1} h=V_{1}\right\}$ be the stabilizer of V_{1}. Clearly V_{1} is an H-module. Note that $k=[G: H]$ as G acts transitively on the set $\left\{V_{1}, \ldots, V_{k}\right\}$.

Theorem

Let V, G, V_{i} and H be as above.Assume $\mathbb{F} \subset \mathbb{C}$, that V affords the $\mathbb{F}[G]$-character χ, and V_{1} affords the $\mathbb{F}[H]$-character ψ. We have that $\chi=\psi \uparrow^{G}$.
Proof : Let $T:=\left\{1=t_{1}, t_{2}, \ldots, t_{k}\right\}$ be a right transversal of H in G.Without loss we may set things up in a way that $V_{s}=V_{1} t_{s}$. We compute the character value of g on V. Now if $g \in G$ then $V_{i} g=V_{i}$ if an only if $V_{1} t_{i} g=V_{1} t_{i}$ if and only if $t_{i} g t_{i}^{-1} \in H$. Thus the contribution of V_{i} to the trace of g is the trace of $t_{i} g t_{i}^{-1}$ on V_{1}; i.e. $\psi^{0}\left(t_{i} g t_{i}^{-1}\right)$. So $\chi(g)=\sum_{i} \psi^{0}\left(t_{i} g t_{i}^{-1}\right)=\psi \uparrow^{G}(g)$ and the claim follows.

Definition

Let W be an $\mathbb{F}[H]$-module and $H \subset G$.

$$
W \otimes_{\mathbb{F}[H]} \mathbb{F}[G]:=(W \otimes \mathbb{F}[G]) / R
$$

where $R:=\langle w \otimes h g=w h \otimes g: \forall w \in W$ and $h \in H\rangle$.
Lemma
Let W be an $\mathbb{F}[H]$-module and $H \subset G . W \otimes_{\mathbb{F}[H]} \mathbb{F}[G]$ is a G-module of dimension $[G: H] \operatorname{dim}(W)$
Proof : Let $k=[G: H]$ and let $T:=\left\{t_{1}, \ldots, t_{k}\right\}$ be a right transversal of H in G.Define $V_{i}:=\left\{w \otimes t_{i}: w \in W\right\}$. Clearly V_{i} is a subspace of dimension $\operatorname{dim}(W)$. Now if $g \in H t_{i}$, then
$0 \neq w \otimes g=w \otimes h t_{i}=w h \otimes t_{i} \in V_{i}$, which shows that the V_{i} 's span V. Now note that $\operatorname{dim}(R) \leq \sum_{t \in T}(|H|-1) \operatorname{dim}(W)=(|G|-[G: H]) \operatorname{dim}(W)$ and hence $\operatorname{dim}\left(W \otimes_{\mathbb{F}[H]} \mathbb{F}[G]\right)=|G| \operatorname{dim}(W)-\operatorname{dim}(R) \geq[G: H] \operatorname{dim}(W)$. The fact that the V_{i} span V proves that the reverse inequality also holds and thus our lemma follows.

Theorem

If W is an $\mathbb{F}[H]$-module then there exists an $\mathbb{F}[G]$-module V with imprimitivity decomposition $\oplus_{i=1}^{r} V_{i}$ such that $V_{1} H=V_{1}$ and W is isomorphic to V_{1} as an H-module.
Proof : Take $V=W \otimes_{\mathbb{F}[H]} \mathbb{F}[G]$.Keeping the notation of the previous lemma we already have $V=\oplus_{i=1}^{k} V_{i}$. Let $g \in G$ and $v \in V_{i}$. Then there exists $w \in V_{1}$ such that $v=w \otimes t_{i}$. Thus

$$
v g=\left(w \otimes t_{i}\right) g=w \otimes\left(t_{i} g\right)=w \otimes\left(h t_{j}\right)=w h \otimes t_{j} \in V_{j}
$$

so $V_{i} g=V_{j}$ proving that $\oplus_{i=1}^{k} V_{i}$ is an imprimitivity decomposition of V. Evidently V_{1} is an H-module isomorphic to W and our theorem follows.

We now see that permutation characters are in fact examples of induced characters. We also see that if λ is a representation of H of degree 1, then with respect to the basis $\left\{\lambda \otimes t_{i}\right\}$ every $g \in G$ acts on $\lambda \uparrow^{G}$ as a monomial matrix.

Definition

A character χ of G is monomial if it is induced from some linear character of some subgroup H of G.A group G is called an M-group if every $\chi \in \operatorname{Irr}(G)$ is monomial.

Lemma
If θ is a character of $H \subset G$, then

$$
\operatorname{Ker}\left(\theta \uparrow^{G}\right)=n_{x \in G}(\operatorname{Ker} \theta)^{x}
$$

Proof : $g \in \operatorname{Ker}\left(\theta \uparrow^{G}\right)$ if and only if

$$
\sum_{x \in G} \theta^{0}\left(x g x^{-1}\right)=\sum_{x \in G} \theta(1) .
$$

But now $\left|\theta^{0}\left(x g x^{-1}\right)\right| \leq \theta(1)$ and thus $x g x^{-1} \in \operatorname{Ker}(\theta)$ for all $x \in G$; i.e. $g \in \operatorname{Ker}(\theta)^{x}$ for all $x \in G$.

QED

By $G^{(i)}$ we denote the i^{\prime} 'th term of the derived series of G. Recall that is defined recursively via $\left.G^{(i)}:=\left[G^{(i-1)}, G(i-1)\right]\right]$ and $G(1):=[G, G]$.

Theorem

Let G be an M-group and let $1=d_{1}<d_{2}<\cdots<d_{k}$ be the set of distinct irreducible character degrees of G. Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=d_{i}$. Then $\left.G^{(} i\right) \subset \operatorname{Ker}(\chi)$.
Proof : We induct on i.If $i=1$, then every character of degree $d_{1}=1$ is linear and thus $G^{(1)} \subset \operatorname{Ker}(\chi)$. So assume that $i>1$. Pick $\psi \in \operatorname{Irr}(G)$ with $\psi(1)=d_{i 1}$. Then

$$
G^{(i)} \subset G^{(i-1)} \subset \operatorname{Ker}(\psi) .
$$

Now $\chi=\lambda \uparrow^{G}$ for some linear character λ of H. Now $\lambda \neq 1_{H}$, as

$$
\left[1_{H} \uparrow^{G}, 1_{G}\right]=\left[1_{H}, 1_{H}\right]=1
$$

and hence the permutation character $1_{H} \uparrow^{G}$ is never irreducible. Now if ψ is a constituent of $1_{H} \uparrow^{G}$, then $\psi(1) \leq[G: H]=\lambda \uparrow^{G}(1)=\chi(1)$ and thus $\boldsymbol{G}^{(i-1)} \subset \operatorname{Ker}(\psi)$ and thus $\boldsymbol{G}^{(i-1)} \subset H$.Thus

$$
G^{(i)} \subset H^{(1)} \subset \operatorname{Ker}(\lambda) .
$$

So as $G^{(i)} \triangleleft G$ we have

$$
G^{(i)} \subset \cap_{x \in G}(\operatorname{Ker} \lambda)^{x}=\operatorname{Ker}(\chi) .
$$

Which is our claim.

Thus if G is an M-group, then $G^{(i)} \subset \operatorname{Ker}(\rho)=1$, where ρ is the regular character. So we have proved:
Corollary
(Taketa) M-groups are solvable.

We will now make precise the connetion between induced characters and permutation characters and derive a few consequences.

Lemma

If G acts transitively on Ω with point stabilizer G_{α} for $\alpha \in \Omega$, then
$1_{G_{\alpha}} \uparrow^{G}$ is the permutation character of the action.
Proof : Let V be the permutation module comming from the G-action on Ω (see Lemma 4.22 and the discussion for more detail). Then $\sum_{\omega \in \Omega}\left\langle v_{\omega}\right\rangle$ is an imprimitivity decomposition of V.
Corollary
If G acts on Ω which permutation character χ, then $\left[\chi, 1_{G}\right]=k$ is equal to the number of orbits of G on Ω.
Proof : If G is transitive then
$\left[\chi, 1_{G}\right]=\left[1_{G_{\alpha}} \uparrow^{G}, 1_{G}\right]=\left[1_{G_{\alpha}}, 1_{G_{\alpha}}\right]=1$.(The second $=$ is due to
Frobenius Reciprocity.)Now it G has k orbits with orbit representatives $\left.\alpha_{1}, \ldots, \alpha_{k}\right\}$, then $\chi=\sum_{a_{i}} 1_{G_{a_{i}}} \uparrow^{G}$ and hence

$$
\left[\chi, 1_{G}\right]=\left[\sum_{a_{i}} 1_{G_{a_{i}}} \uparrow^{G}, 1_{G}\right]=\sum_{a_{i}}\left[1_{G_{a_{i}}} \uparrow^{G}, 1_{G}\right]=k
$$

Corollary

If G acts on Ω which permutation character χ, then $[\chi, \chi]=r$ where r is the number of orbits of G_{α} on Ω.
Proof : We have

$$
r=\left[\chi \mid G_{\alpha}, 1_{G_{\alpha}}\right]=\left[\chi, 1_{G_{\alpha}} \uparrow^{G}\right]=[\chi, \chi]
$$

QED

Definition

If G acts transitively on Ω and $\alpha \in \Omega$, then the number of G_{α}-orbits on Ω is called the permutation rank of the G action on Ω.
If the permutation rank of G on Ω is two, then G_{α} acts transitively on $\Omega \backslash\{\alpha\}$; i.e. G acts 2-transitively on Ω.
Corollary
If G acts transitively on Ω with permutation character χ, then G acts
2 -transitively if and only if $\chi=1_{G}+\psi$ with $\psi \in \operatorname{Irr}(G)$.

Example 1:The permutation character of S_{n} in its action on $\{1, \ldots, n\}$ is $1_{S_{n}}+\chi$ where $\chi \in \operatorname{Irr}\left(S_{n}\right)$ is of degree $n-1$. The module affording χ is called the reduced permutation module.
Example 2: S_{n} acting on Ω_{k},the set of unordered k-elements subsets of $\{1, \ldots, n\}$ with $k<[n / 2]$ is a permutation action of rank k.
Example 3: $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ acting on the 1 -spaces of \mathbb{F}_{q}^{n} is an example of a 2 -transitive permutation action. This shows that $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ has an irreducible character of degree $\frac{q^{n}-1}{q-1}-1=q \frac{q^{n-1}-1}{q-1}$.
Example 4: Assume n is even. The restriction of the action above to $S p_{n}(q)$ is an example of a rank 3 -action. The stabilizer of a 1 -space is transitive on the set of 1 -spaces of perpendicular but not equal to it, and transitive on the set of 1 -spaces not perpendicular to it.
Example 5: The dihedral group $D_{2 n}$ acting on the vertices of a regular n-gon is of rank $(n+1) / 2$ if n is odd, and rank $(n+2) / 2$ if n is even.

1. Show that the set of distinct character degrees of the dihedral group $D_{2 n}$ is $\{1,2\}$.
Hint: Depending on whether n is even or odd, $D_{2 n}$ has either 4 or repsectively 2 distinct linear characters. Now show that all nonlinear characters are obtained via induction from a nontrivial linear character of $\mathbb{Z} / \mathbb{Z}_{n} \subset D_{2 n}$.
2. Prove that S_{n} acting on Ω_{k}, the set of unordered k-elements subsets of $\{1, \ldots, n\}$ with $k<[n / 2]$ is a permutation action of rank k.
3. Using the notation and hypotheses of the problem 8 in section 7 show that $|G|=q(q-1)(q+1)$.

Note that it is now easy to show that the group in problem 3 is isomorphic to $\mathrm{SL}_{2}(q)$. This was first proved by Brauer, Suzuki and Wall.

Clifford's theorem and consequences

If H is a subgroup of G, then generally very little can be said about the induction and restriction maps. However the situation improves dramatically when H is normal in G.
If $H \triangleleft G$ and ϕ is a class function of H, then for $g \in G$ define

$$
\phi^{g}(h):=\phi\left(g h g^{-1}\right) .
$$

We call ϕ^{g} a conjugate of ϕ.
Lemma
If $H \triangleleft G$ and ϕ, ψ are class functions of H and $x, y \in G$, then

1. ϕ^{x} is a class function of H.
2. $\left(\phi^{x}\right)^{y}=\phi^{x y}$.
3. $\left[\phi^{x}, \psi^{x}\right]=[\phi, \psi]$.
4. $\left[\chi_{H}, \psi^{x}\right]=\left[\chi_{H}, \psi\right]$ for class functions χ of G.
5. ϕ^{x} is a character iff ϕ is a character.

Proof : Let $g, h, t \in H$ with $g^{t}=h$. Then
$\phi^{x}(h)=\phi^{x}\left(g^{t}\right)=\phi\left(x t^{-1} g t x^{-1}\right)=\phi\left(\left(x t^{-1} x^{-1}\right) x h x^{-1}\left(x t x^{-1}\right)\right)=\phi\left(x h x^{-1}\right)=$
as $\left(x t x^{-1}\right)^{-1}=x t^{-1} x^{-1} \in H$ due to our hypothesis that $H \triangleleft G$.
For part 2 note that

$$
\left(\phi^{x}\right)^{y}(h)=\phi^{x}\left(y h y^{-1}\right)=\phi\left(x\left(y h y^{-1}\right) x^{-1}\right)=\phi\left((x y) h(x y)^{-1}\right)=\phi^{x y}(h) .
$$

For part 3 note that the sums are identical as conjugation by x simply just permutes the summands.
For part 4 observe that $\chi_{H}^{X}=\chi$ and then apply part 3.
For part 5 let ϕ be a representation affording ϕ and let $\alpha \in \operatorname{Aut}(H)$, then $\alpha \circ \Phi$ is a representation affording the character $\psi(h \alpha)$.Now observe that as $H \triangleleft G$ conjugation by x^{-1} induces an automorphism on H.

We if Φ is a representation of H and $\alpha \in \operatorname{Aut}(H)$ then we say that $\alpha \circ \Phi$ and Φ are quasi-equivalent. The terminology $\alpha \circ \Phi$ is the twist of Φ by α is also in use. When H is a normal subgroup of G and α is conjugation on N by an element of G, then we call $\alpha \circ \Phi$ a conjugate of Φ.

Theorem

(Clifford) If $H \triangleleft G$ and $\chi \in \operatorname{Irr}(G), \psi$ a constituent of $\chi_{н}$ and $\psi=\psi_{1}, \ldots, \psi_{t}$ the distinct G-conjugates of ψ, then

$$
\chi_{H}=e \sum_{i=1}^{t} \psi_{i}
$$

where $\boldsymbol{e}=\left[\chi_{H}, \psi\right]$.
Proof: We compute $\left(\psi \uparrow^{G}\right)_{H}$. For $h \in H$ we have

$$
\left(\psi \uparrow^{G}\right)_{H}(h)=\frac{1}{|H|} \sum_{x \in G} \psi^{0}\left(x h x^{-1}\right)=\frac{1}{|H|} \sum_{x \in G} \psi^{x}(h)
$$

Thus

$$
|H|\left(\psi \uparrow^{G}\right)_{H}=\sum_{x \in G} \psi^{x} .
$$

Now if $\phi \in \operatorname{Irr}(H) \backslash\left\{\psi=\psi_{1}, \ldots, \psi_{t}\right\}$, then

$$
\left[|H|\left(\psi \uparrow^{G}\right)_{H}, \phi\right]=|H|\left[\left(\psi \uparrow^{G}\right)_{H}, \phi\right]=\left[\sum_{x \in G} \psi^{x}, \phi\right]=0 .
$$

By Frobenius Reciprocity we have χ is a constituent of $\psi \uparrow^{G}$ and thus $\left[\chi_{H}, \phi\right]=0$.

Also we have that $\left[\chi_{H}, \psi_{i}\right] \neq 0$ and moreover that

$$
\chi_{H}=\sum_{i=1}^{t}\left[\chi_{H}, \psi_{i}\right] \psi_{i} .
$$

But now by part 4 of the previous lemma we have $\left[\chi_{H}, \psi_{i}\right]=\left[\chi_{H}, \psi\right]$ and the theorem follows.

QED
We would now like have a module theoretic interpretation of Clifford's Theorem.

Lemma
Let V be an $\mathbb{F}[G]$-module and let $H \triangleleft G$. Suppose that W is an $\mathbb{F}[H]$-submodule of V. The following are true:

1. For all $g \in G, W g$ is an $\mathbb{F}[H]$-module conjugate to W.
2. If M is a $\mathbb{F}[H]$ module conjugate to W, then $M \cong W g$ for some $g \in G$.
3. If $U \subset V$ is an $\mathbb{F}[H]$-submodule isomorphic to $W, U g \cong W g$ as $\mathbb{F}[H]$-modules.

Proof : Note that $(W g) h=\left(W\left(g h g^{-1}\right)\right) g=W g$ as $g h g^{-1} \in H$. Moreover we see that the H action is the action on the conjugate, proving part 1.The other two are consequences of the first.

QED

Theorem

(Clifford) Let V be an irreducible $\mathbb{F}[G]$-module and let $H \triangleleft G$. Suppose that W is an irreducible $\mathbb{F}[H]$-submodule of V. The following are true:

1. $V=\oplus I_{V}(W g)$ where $W g$ ranges over the W conjugates of G.
2. We have $\operatorname{dim}\left(I_{V}(W)\right)=\operatorname{dim}\left(I_{V}(W g)\right)$.

Proof : This we already saw that all G conjugates of W lie in V.Also the isotypic components are permuted transitively by G.Thus both parts follow.
Corollary
If V be an irreducible $\mathbb{F}[G]$-module and let $H \triangleleft G$, then V is completely reducible as $\mathbb{F}[H]$-module.

Remark: Clifford's Theorem is independent of Maschke's Theroem and needs no assumptions on \mathbb{F}, thus making it usefull in both ordinary and modular representation theory.

We now derive some consequences of Clifford's Theorem.
Lemma
If $\chi \in \operatorname{Irr}(G), H \triangleleft G$ and $\left[\chi_{H}, 1_{H}\right] \neq 0$, then $H \subset \operatorname{Ker}(\chi)$.
Proof : The conjugates of 1_{H} are all equal to 1_{H} and thus $\chi_{H}=e 1_{H}=\chi(1) 1_{H}$. So H acts trivially and the claim follows.

QED
Lemma
If $\chi \in \operatorname{Irr}(G), H \triangleleft G, \psi \in \operatorname{Irr}(H)$ and $\left[\chi_{H} \cdot \psi\right] \neq 0$, then $\psi(1)$ is a divisor of $\chi(1)$
Proof : As $\psi(1)=\psi^{g}(1)$ Clifford's Theorem implies $\chi(1)=$ et $\psi(1)$ where t is the number of G conjugates of ψ. This is our claim.

Theorem

If p is a prime and $\chi(1)=p^{a(\chi)}$ for all $\chi \in \operatorname{Irr}(G)$, then G has a normal abelian p-complement.
Proof : Let $N \triangleleft G$.By the previous lemma every irreducible character is of p-power degree.Thus by induction N has an abelian p-complement. So it suffices to find a normal subgroup of G of index p.
Now

$$
|G|=\left[G: G^{\prime}\right]+\sum_{\chi \in \operatorname{Irr}(G): \chi(1)>1} \chi(1)^{2} .
$$

If G is abelian then clearly G has a normal subgroup of index p.So without loss we assume that G is not abelian. But then the formula above implies that p divides $\left[G: G^{\prime}\right]$. But now the subgroup correspondence theorem implies the existence of a normal subgroup of index p.Our proof is complete.

Definition

If $H \triangleleft G, \psi$ is a character of H, then $I_{G}(\psi):=\left\{g \in G: \psi^{g}=\psi\right\}$.
The number of conjugates of ψ is $\left[G: I_{G}(\psi)\right.$]. It is worth noting that the integer t that appears in Clifford's Theorem is the index of an inertial group.

Theorem
Suppose $H \triangleleft G, \theta \in \operatorname{Irr}(H)$, and $T=I_{G}(\theta)$.Define $\mathcal{A}=\left\{\psi \in \operatorname{Irr}(T):\left[\psi_{H}, \theta\right] \neq 0\right\}, \mathcal{B}=\left\{\chi \in \operatorname{Irr}(G):\left[\chi_{H}, \theta\right] \neq 0\right\}$. The following are true:

1. If $\psi \in \mathcal{A}$, then $\psi \uparrow^{G} \in \operatorname{Irr}(G)$.
2. The map $\psi \longrightarrow \psi \uparrow^{G}$ is a bijection of \mathcal{A} onto \mathcal{B}.
3. If $\psi \uparrow^{G}=\chi$, with $\psi \in \mathcal{A}$, then ψ is the unique irreducible constituent of χ_{T} which lies in \mathcal{A}.
4. If $\psi \uparrow^{G}=\chi$, with $\psi \in \mathcal{A}$, then $\left[\psi_{H}, \theta\right]=\left[\chi_{H}, \theta\right]$.

Proof : Let $\psi \in \mathcal{A}$ and let χ be some irreducible constituent of $\psi \uparrow^{G}$. Then ψ is an irreducible constituent of χ_{T}. As θ is a constituent of ψ_{H} we see that $\chi \in \mathcal{B}$. Let $\theta=\theta_{1}, \ldots, \theta_{t}$ be the distinct G conjugates of θ. Then $t=[G: T]$ and $\chi_{H}=e \sum_{i=1}^{t} \theta_{i}$ for some $e \in \mathbb{N}$. Since θ is T-invariant we see, by Clifford's Theorem that $\psi_{H}=f \theta$. Since ψ is a constituent of χ_{T}, we have $f \leq e$. So

$$
\operatorname{et} \theta(1)=\chi(1) \leq \psi \uparrow^{G}(1)=t \psi(1)=f t \theta(1) \leq e t \theta(1),
$$

and thus we have equality throughout. Hence $\chi(1)=\psi \uparrow^{G}(1)$ and thus $\chi=\psi \uparrow^{G}$, which implies part 1 .
Now $\left[\chi_{H}(1), \theta\right]=e=f=\left[\psi_{H}, \theta\right]$ proving part 4.

To prove part 3 observe that if $\psi_{1} \in \mathcal{A}$ with $\psi_{1} \neq \psi$, and ψ_{1} is a constituent of χ_{T}, then
$\left[\chi_{H}, \theta\right] \geq\left[\left(\psi+\psi_{1}\right)_{H}, \theta\right]=\left[\psi_{H}, \theta\right]+\left[\left(\psi_{1}\right)_{H}, \theta\right]>\left[\psi_{H}, \theta\right] ;$ a contradition to the last formula in the proof of part 1.
To prove part 2 note that the map is well defined, by part 1 , and its image lies in \mathcal{B}, by part 4.It is one to one by part 3 . So we have to prove that the map is onto. To this end let $\chi \in \mathcal{B}$. Since θ is a constituent of χ_{H}, there exists an irreducible constituent ψ of χ_{T} such that $\left[\psi_{H}, \theta\right] \neq 0$.But now $\psi \in \mathcal{A}$ and so χ is a constituent of $\psi \uparrow^{G}$. So $\chi=\psi \uparrow^{G}$, completing the proof.

Corollary

Let $\chi \in \operatorname{Irr}(G)$ be primitive and $N \triangleleft G$, then χ_{N} is a multiple of an irreducible character of N.
Proof : By Clifford's theorem $\chi_{N}=e \sum_{i=1}^{t} \psi_{i}$ where the ψ_{i} are the distinct conjugates. Since χ is primitive $t=1$, hence the claim. QED
Remark: This is analogous to the theorem that the orbits of a normal subgroup N of a transitive permutation group G form a system of imprimitivity. This implies that if the action of G is primitive, then N is transitive.

Theorem

(Ito) If A is an abelian normal subgroup of G,then $\chi(1)$ is a divisor of [$G: A]$ for all $\chi \in \operatorname{Irr}(G)$.
Proof : Without loss we may assume that $A \neq \operatorname{Ker}(\chi)$. So let $\lambda \in \operatorname{Irr}(A)$ with $\left[\chi_{A}, \lambda\right] \neq 0$. Then $A \subset I_{G}(\lambda)=: T$.So for some $\psi \in \operatorname{Irr}(T)$ we have $\chi=\psi \uparrow^{G}$ and that $\psi_{A}=e \lambda$. Thus $A \subset Z(\psi)$, so $\psi(1)$ is a divisor of $[T: A]$.(by a strengthening of our result that $\chi(1)$ is a divisor of the group order.) Since $\chi(1)=[G: T] \psi(1)$ we have our desired conclusion.
ExampleLet $G \subset \mathrm{GL}_{3}\left(\mathbb{F}_{q}\right)$ be the stabilizer of the 1 -space of \mathbb{F}_{q}^{3} spanned by $[1,0,0]$. Then G^{\prime} contains an abelian normal subgroup $A \cong \mathbb{F}_{q}^{2}$ on such that $G^{\prime} / A \cong \mathrm{SL}_{2}(q)$ acts transitively on $A \backslash$ 1.If $\chi \in \operatorname{Irr}\left(G^{\prime}\right)$ and $A \not \subset \operatorname{Ker}(\chi)$, then $\left[G^{\prime}: I_{G^{\prime}}(\lambda)\right]=q^{2}-1$. Now $I_{G^{\prime}}(\lambda) / A \cong \mathbb{F}_{q}$ is abelian the group, so G^{\prime} has exactly q characters of degree $q^{2}-1$ which do not have A in the kernel.

Theorem

(Brauer) Let A be a group which acts on $\operatorname{Irr}(G)$ and on the set of conjugacy classes of G.Assume that $\chi(g)=\chi^{a}\left(g^{a}\right)$ for all $\chi \in \operatorname{Irr}(G)$, $g \in G, a \in A$ and that $g^{a} \in\left(g^{G}\right)^{a}$. Then for each $a \in A$, the number of fixed irreducible characters of G is equal to the number of fixed classes.
Proof : Let χ_{i} and C_{i} denote the irreducible characters respectively the conjugacy classes of G.For $a \in A$ we label things so that $g_{i}^{a}=g_{j}$ if $C_{i}^{a}=C_{j}^{a}$. Now let $X=\left(\chi_{i}\left(g_{j}\right)\right)$ be the character table matrix. Let $P(a):=\left(\delta_{\chi_{r}^{a}, \chi_{s}}\right)$ and $Q(a):=\left(\delta_{C_{r}^{a}, C_{s}}\right)$.Our hypotheses imply that $P(a) X=X Q(a)$. The orthogonality relations imply that X is invertible and thus $Q(a)=X^{-1} P(a) X$, so $\operatorname{Tr}(P(a))=\operatorname{Tr}(Q(a))$. That is the number of fixed points of a on both characters and conjugacy classes are equal.

Corollary

Under the hypotheses of the previous theorem the number of orbits in the actions of A on $\operatorname{Irr}(G)$ and on the G conjugacy classes C_{1}, \ldots, C_{k} is the same.
Proof : The proof of the theorem above shows that the permutation characters of A on $\operatorname{Irr}(G)$ and on $\left\{C_{1}, \ldots C_{k}\right\}$ are equal. Thus the number of orbits must coincide.

QED
Theorem
If $N \triangleleft G$ and assume that $C_{G}(x) \subset N$ for all $1 \neq x \in N$, then

1. For $1_{N} \neq \psi \in \operatorname{Irr}(N)$ we have $I_{G}(\psi)=N$ and $\psi \uparrow^{G} \in \operatorname{Irr}(G)$.
2. For $\chi \in \operatorname{Irr}(G)$ with $N \not \subset \operatorname{Ker}(\chi)$ we have $\chi=\psi \uparrow^{G}$ for some $\psi \in \operatorname{Irr}(N)$.

Proof : Let $1_{N} \neq \psi \in \operatorname{Irr}(N)$. To show that $\psi \uparrow^{G} \in \operatorname{Irr}(G)$ it suffices to show that $I_{G}(\psi)=N$. So by the theorem above it suffices to show no element $g \in G \backslash N$ fixes a conjugacy class of N.Let $g \in G \backslash N$ and suppose that $C_{i}^{g}=C_{i}$ and $x \in C_{i}$. Then $x^{g}=x^{n}$ for some $n \in N$ and thus $g n^{-1} \in C_{G}(x) \backslash N=\emptyset$;which proves part 1 .
To prove part 2 let $\chi \in \operatorname{Irr}(G)$ with $N \not \subset \operatorname{Ker}(\chi)$ and pick an irreducible constituent $1_{N} \neq \psi$ of χ_{H}. Then χ is a constituent of $\psi \uparrow^{G} \in \operatorname{Irr}(G)$.
Thus $\chi=\psi \uparrow^{G} \in \operatorname{Irr}(G)$ and the proof is complete.
QED

Frobenius' theorem and related results

While it is true that very little can be said about restriction of characters to subgroups in general there are special situations where the situation is much better. One such was the condition that $H \triangleleft G$. Here we consider a different extremal situation which already came up in the last theorem of the previous section. Namely the situation where $N \triangleleft G$ and assume that $C_{G}(x) \subset N$ for all $1 \neq x \in N$.
Lemma
If $N \triangleleft G$ and assume that $C_{G}(x) \subset N$ for all $1 \neq x \in N$, then the following are true:

1. N has a complement H in G.
2. If H is a complement to N in G and $g \in G \backslash H$, then $H \cap H^{g}=1$.

Proof : If p is a prime dividing $([G: N],|G|)$ and $P \in \operatorname{Syl}_{p}(G)$, then $Z(P) \cap N \neq 1$ as P is nilpotent. So if $x \in Z(P) \cap N$, then $P \subset C_{G}(x)$ but $P \not \subset N$;contradicting our hypothesis. So $([G: N],|G|)=1$ and now the Schur-Zassenhaus theorem gives the existence of H such that $N H=G$ and $N \cap H=1$; proving part 1.
To prove part 2 let $g \in G \backslash H$ and write $g=x n$ where $x \in H$ and $n \in N$. If $y \in H \cap H^{g}$, then there exists $h \in H$ such that $y=h^{n}$ for some $h \in H$. Thus $h^{-1} y \in H$ and $h^{-1} y=h^{-1} h^{n}=[h, n] \in N$.So $[h, n]=1$, that is $h \in C_{G}(N)$ forcing $h \in N \cap H=1$.So $h=y=1$ and part 2 follows.
Definition
If H is a subgroup of G and for all $g \in G \backslash H$ we have $H \cap H^{g}=1$, then we call H a Frobenius complement and G a Frobenius group.

Theorem

(Frobenius) Let G be a Frobenius group with complement H, then H has a normal complement in G. That is G has a normal subgroup N such that $G=H N$ and $H \cap N=1$.
We need two preperatory lemmas.
Lemma
If H is a Frobenius complement in G then

$$
N:=\left(G \backslash \cup_{x \in G} H^{x}\right) \cup\{1\}
$$

has order $[G: H]$ and if $M \triangleleft G$ with $M \cap H=1$, then $M \subset N$.
Proof : Since $N_{G}(H)=H$ the number of distinct conjugates of H is [$G: H]$. The number of nonidentity elements in $\cup_{x \in G} H^{x}$ is

$$
[G: H](|H|-1)=|G|-[G: H]
$$

, so the claim about the order of N follows. Now let $M \triangleleft G$ with $M \cap H=1$, then $M \cap H^{x}=(M \cap H)^{x}=1^{x}=1$. Thus $M \subset N$, by definition of N.

Note that N may not be a subgroup of G. This is in fact the crux of the matter.

Lemma

If H is a Frobenius complement in G and θ a class function of H such that $\theta(1)=0$, then $\left(\theta \uparrow^{G}\right)_{H}=\theta$.
Proof : Let $1 \neq h \in H$.Then

$$
\theta \uparrow^{G}(h)=\frac{1}{|h|} \sum_{x i n G} \theta^{o}\left(x h x^{-1}\right) .
$$

Now $0 \neq \theta^{\circ}\left(x h x^{-1}\right)$ implies that $1 \neq x h x^{-1} \in H \cap H^{x^{-1}}$; i.e., $x \in H$. So

$$
\theta \uparrow^{G}(h)=\frac{1}{|h|} \sum_{x i n H} \theta\left(x h x^{-1}\right)=\theta(h) .
$$

Finally observe that $\theta \uparrow^{G}(1)=[G: H] \theta(1)=0$ and the proof is complete.

QED

Proof : (of Frobenius' theorem)Let $1_{H} \neq \psi \in \operatorname{Irr}(H)$ and set $\theta=\psi-\psi(1) 1_{H}$. Note that $\theta(1)=0$ so the previous lemma yields

$$
\left[\theta \uparrow^{G}, \theta \uparrow^{G}\right]=\left[\theta,\left(\theta \uparrow^{G}\right)_{H}\right]=[\theta, \theta]=1+\psi(1)^{2} .
$$

Also $\left[\theta \uparrow^{G}, 1_{G}\right]=\left[\theta, 1_{H}\right]=-\psi(1)$ and thus $\theta \uparrow^{G}=\psi^{*}-\psi(1) 1_{G}$, where ψ^{*} is a class function of \boldsymbol{G} such that $\left[\psi^{*}, 1_{G}\right]=0$ and

$$
1+\psi(1)^{2}=[\theta, \theta]=\left[\psi^{*}, \psi^{*}\right]+\psi(1)^{2}
$$

So $\left[\psi^{*}, \psi^{*}\right]=1$. As θ is a difference of characters, so is $\theta \uparrow^{G}$ and thus also ψ^{*} and hence $\pm \psi^{*} \in \operatorname{Irr}(G)$.Moreover if $h \in H$, then

$$
\psi^{*}(h)=\theta \uparrow^{G}(h)+\psi(1)=\theta(h)+\psi(1)=\psi(h),
$$

and in particular $\psi^{*}(1)=\psi(1) \geq 1$;showing that $\psi^{*} \in \operatorname{Irr}(\boldsymbol{G})$.
So for all $1_{H} \neq \psi \in \operatorname{Irr}(H)$ we can find an extension $\psi^{*} \in \operatorname{Irr}(G)$. Define $M:=\cap_{\psi} \operatorname{Ker}\left(\psi^{*}\right)$. If $x \in M \cap H$, then $\psi(x)=\psi^{*}(x)=\psi^{*}(1)=\psi(1)$, for all $\psi \in \operatorname{Irr}(H)$ and hence $x=1$. So by the previous lemma $M \subset N$.
Conversely, if $g \notin \cup_{x \in G} H^{x}$, then

$$
\psi^{*}(g)-\psi(1)=\theta \uparrow^{G},(g)=0
$$

showing $g \in M$. Thus $M=N$ and $M \cap H=1$. As $|M|=|N|=[G: H]$ we also have $G=M H$.

QED

The subgroup N whose existence was proved in the theorem above is called a Frobenius kernel.

Corollary

If G is a transitive permutation group on Ω with permutation character χ, and $\chi(g) \leq 1$ for all $g \in G$, then G_{α} is a Frobenius complement with Frobenius kernel equal to $\{g \in G: \chi(g)=0\} \cup\{1\}$.
Proof : Notice that if $1 \neq g \in G_{\alpha} \cap G_{\beta}$ then $\chi(g) \geq 2$ which contradicts our hypothesis.Thus G_{α} is a Frobenius complement. The rest follows from Frobenius' theorem.

QED

Definition

A subset $X \subset G$ is called a T.I. set (trivial intersection set) if for all $g \in G$ we have $X=X^{g}$ or $X \cap X^{g} \subset\{1\}$.
Lemma
If X is a T.I. set in G, ϕ, ψ class functions on $N:=N_{H}(X)$ such that $\phi(n)=0=\psi(n)$ for all $n \in N \backslash X$ and $\psi(1)=0$, then $\psi \uparrow^{G}(x)=\psi(x)$ for all $\boldsymbol{x} \in X$ and $\left[\psi \uparrow^{G}, \phi \uparrow^{G}\right]=[\psi, \phi]$.

Proof: If $x \in X$, then $\psi \uparrow^{G}(x)=\frac{1}{|N|} \sum_{y \in G} \psi^{o}\left(y x y^{-1}\right)$. Now if
$\psi^{o}\left(y x y^{-1}\right) \neq 0$,then $1 \neq y x y^{-1} \in X \cap X^{y^{-1}}$. So $y \in N$ and
$\psi^{o}\left(y x y^{-1}\right)=\psi(x)$ which is our first claim.
To prove the second claim we see that $\left[\psi \uparrow^{G}, \phi \uparrow^{G}\right]=\left[\left(\psi \uparrow^{G}\right)_{N}, \phi\right]$. As ϕ vanishes on $N \backslash X$ and $\left(\psi \uparrow^{G}\right)_{N}-\psi$ vanishes on X, we have $\left[\left(\psi \uparrow^{G}\right)_{N}-\psi, \phi\right]=0$ which implies our second claim.
Recall that a group $Q_{2 n}, n=2^{a}$ with presentation

$$
\left\langle x, y: x^{n}=y^{2}, y^{-1} x y=x^{-1}\right\rangle
$$

is a generalized quaternion group of order $2 n$. The following lemma is a collection of some standard facts about generalized quaternion groups.
Lemma
If $P \cong Q_{2 n}$ then the following are true:

1. $\langle x\rangle$ is a cyclic subgroup of P of index 2 .
2. $\left[P ; P^{\prime}\right]=4$.
3. $|Z(P)|=2$ and and in fact $Z(P)=\left\langle x^{n / 2}\right\rangle=\left\langle y^{2}\right\rangle$.
4. Noncyclic subgroups of P are generalized quaternion.
5. P contains a unique involution; the central one.

Theorem

(Brauer-Suzuki) If $P \in \operatorname{Syl}_{2}(G)$ is a generalized quaternion group of order ≥ 16, then there exists $N \triangleleft G$ with $|N|$ odd such that G / N has a normal subgroup of order 2.
Remark: The condition $|P| \geq 16$ can be dropped. However the case $P=Q_{8}$ requires tools from the theory of modular representation theory.
Remark: The normal subgroup of order will lie in $Z(G / N)$ whose pullback into G sometimes referred to as Z^{*}.
Remark: The condition that P contains a unique involution implies that G has a unique class of involutions t^{G} and that $t^{G} \cap P=\{t\}$.

Theorem

(Glauberman) If $P \in \operatorname{Syl}_{2}(G)$ and t is an involution in G such that $t^{G} \cap P=\{t\}$,then there exists $N \triangleleft G$ with $|N|$ odd such that G / N has a normal subgroup of order 2.
The proof of Glauberman's Z^{*}-theorem requires the strengthend version of the Brauer-Suzuki theorem.
To prove the Brauer-Suzuki theorem we will first prove
Theorem
If $P \in \operatorname{Syl}_{2}(G)$ is a generalized quaternion group of order ≥ 16, then there exists $M \triangleleft G$ with $|M|$ even and G / M nonabelian.

Proof : Let H be the unique cyclic subgroup of P of index 2.Clearly $P^{\prime} \subset H$.As $P^{\prime}>Z(P)$ we have $H \subset C_{P}\left(P^{\prime}\right) \neq P$; hence $H=C_{P}\left(P^{\prime}\right)$.Now let $N:=N_{G}\left(P^{\prime}\right)$ and $C:=C_{G}\left(P^{\prime}\right)$,then $P \in \operatorname{Syl}_{2}(N)$ and so $P \cap C=C_{P}\left(P^{\prime}\right)=H \in \operatorname{Syl}_{2}(C)$.So C has a normal 2-complement (see problem 2 in section 7)say K.Now N / C is isomorphic to a a subgroup of $\operatorname{Aut}\left(P^{\prime}\right)$, and hence a 2-group;as P^{\prime} is cyclic of 2-power order. Thus we conclude that $N=P K$, and as $P^{\prime} \triangleleft C$,that $P^{\prime} K=P^{\prime} \times K$.
Now let $U \subset P^{\prime}$ be the unique subgroup of index 2 in P^{\prime} and $X=C-U K$. We claim that X is a T.I. setand that $N_{G}(X)=N$. To see this we first observe that the elements of X all have order divisible by $\left|P^{\prime}\right|$,and thus for all $x \in X$ we have $P^{\prime} \subset\langle x\rangle$. So if $x \in X \cap X^{g}$, then P^{\prime} and $\left(P^{\prime}\right)^{g}$ are contained in $\langle x\rangle$; forcing $P^{\prime}=\left(P^{\prime}\right)^{g}$, i.e. $g \in N$.
So $C / U K \cong \mathbb{Z} / 4 \mathbb{Z}$. and $N / U K \cong D_{8}$. Let λ be a linear character with $\operatorname{Ker}(\lambda)=U K$ and let $\theta=\lambda \uparrow^{N}-\left(1_{C}\right) \uparrow^{N}$. As $\operatorname{Ker}\left(\lambda \uparrow^{N}\right)=U K$ we see that $\theta(t)=0$ for all $t \in U K$. Moreover θ vanishes on $N \backslash C$, and thus on $N \backslash X$. So we can apply Lemma 10.8 to conclude that

$$
\left[\theta \uparrow^{G}, \theta \uparrow^{G}\right]=[\theta, \theta] .
$$

We need to compute $[\theta, \theta]$. To do this note that $1_{C} \uparrow^{N}=1_{N}+\mu$ where $\operatorname{Ker}(\mu)=C$. We claim that $\lambda \uparrow^{N} \in \operatorname{Irr}(N)$. Else $\lambda \uparrow^{N}$ is a the sum of linear characters forcing $P^{\prime} K \subset \operatorname{Ker}\left(\lambda \uparrow^{N}\right)=U K$, a contradiction. Thus

$$
\theta=\lambda \uparrow^{N}-\mu-1_{N}
$$

and so $\left[\theta \uparrow^{G}, \theta \uparrow^{G}\right]=[\theta, \theta]=3$.We have $\left[\theta \uparrow^{G}, 1_{G}\right]=\left[\theta, 1_{N}\right]=1$ which shows that

$$
\theta \uparrow^{G}= \pm \chi_{1} \pm \chi_{2}-1_{G}
$$

where $\chi_{1}, \chi_{2} \in \operatorname{Irr}(G) \backslash\left\{1_{G}\right\}$.As $\theta \uparrow^{G}(1)=\theta(1)=0$ we may conclude that

$$
\theta \uparrow^{G}=\chi_{1}-\chi_{2}-1_{G} .
$$

Now $\theta \uparrow^{G}(g)=0$ unless g is conjugate to an element of x so we see that

$$
\chi_{1}(g)-\chi_{2}(g)=1
$$

if 4 does not divide the order of g.Now let C_{1} denote the conjugacy class of involutions of G.Note that by Sylow's theorem all involutions are conjugate to involutions in P, and P has exactly one involution;hence G has a unique class of involutions.

Define the class function ϕ of G via

$$
\phi(g):=\left|\left\{(x, y) \quad x, y \in C_{1}, x y=g\right\}\right| .
$$

If $\phi(g) \neq 0$, then $g=x y$ and thus $g^{x}=x(x y) x=y x=g^{-1}$.If g has even order then $\langle x, y\langle$ contains an elementary abelian subgroup of rank 2, which by Sylow's theorem must be isomorphic to a subgroup of P;a contradiction. We conclude that $\phi(g)=0$ whenever g has even order. Thus for all $g \in G$ we have $\phi(g)\left(\chi_{1}(g)-\chi_{2}(g)-1\right)=0$ and thus

$$
\left[\phi, \chi_{1}-\chi_{2}-1_{G}\right]=0 .
$$

Recall that the class sums in $\mathbb{C}[G]$ form a basis for $Z(\mathbb{C}[G])$ and recall the setup and conclusion of problem 2 in section 5 . We have

$$
\phi(g)=a_{1,1, \nu}=\left(\left|C_{1}\right|^{2} /|G|\right) \sum_{\chi \in \operatorname{trr}(G)} \chi(x)^{2} \chi(g) / \chi(1) .
$$

As $\chi(x), \phi(g) \in \mathbb{R}$ we have

$$
\left(|G| /\left|C_{1}\right|^{2}\right) \phi=\sum_{\chi \in \operatorname{Irr}(G)}\left(\chi(x)^{2} / \chi(1)\right) \chi
$$

and thus

$$
\left(|G| /\left|C_{1}\right|^{2}\right)[\phi, \chi]=\left(\chi(x)^{2} / \chi(1)\right)
$$

for all $\chi \in \operatorname{Irr}(G)$.Combining this with $\left[\phi, \chi_{1}-\chi_{2}-1_{G}\right]=0$ yields

$$
\left(\chi_{1}(x)^{2} / \chi_{1}(1)\right)-\left(\chi_{2}(x)^{2} / \chi_{2}(1)\right)=1 .
$$

As $\chi_{2}(x)=\chi_{1}(x)-1$ (as $|x|$ is not divisible by 4) and $\chi_{2}(1)=\chi_{1}(1)-1$ we get

$$
\left(\chi_{1}(x)^{2} / \chi_{1}(1)\right)-\left(\chi_{1}(x)-1\right)^{2} /\left(\chi_{1}(1)-1\right)=1 .
$$

which simplifies to

$$
\left(\chi_{1}(x)-\chi_{1}(1)\right)^{2}=0 .
$$

We conclude that $x \in \operatorname{Ker}\left(\chi_{1}\right)$ and that $\chi_{1}(1)=1+\chi_{2}(1) \geq 2$. Thus $G / \operatorname{Ker}\left(\chi_{1}\right)$ is nonabelian and hence our desired subgroup M is $\operatorname{Ker}\left(\chi_{1}\right)$.

QED

Proof : (of the Brauer-Suzuki theorem) We already established that G has a unique class of involutions. So let U be the subgroup generated by all the involutions in G. If U has a cyclic Sylow 2-subgroup, then U has a normal 2-complement N.As N is characteristic in U and U is normal in G we have $N \triangleleft G$.So U / N is a cyclic normal 2 subgroup of G / N and the result follows.
If the Sylow 2 -subgroups are not cyclic,then as P is generalized quaternion we have that 8 is a divisor of $|U|$ and thus there exist a subgroup $U \subset V \subset P U$ such that $[V: U] \leq 2$ and 16 divides $|V|$. So we can apply our theorem to produce $M \triangleleft V$ of even order such that V / M is nonabelian. V also contains a unique class of involutions and hence $U \subset M$. But now $[V: M] \leq[V: U] \leq 2$ contradicting that V / M is non-abelian. Our proof is now complete.

QED

We already mentioned that the Brauer-Fowler theorem is part of the philosophical basis of the classification of the finite simple groups.At the end of chapter 5 we saw how to classify simple groups G with the smallest possible involution centralizer.All examples lead to A_{5}. The next smallest situation is when the involution centralizer C has order 8. The case $C \in \operatorname{Syl}_{2}(G)$ is elementary abelian of order 8 leads to the group $\mathrm{PSL}_{2}(8)$. The case where C abelian but not elementary abelian leads to a contradiction (to simplicity) as does the case where $C \cong Q_{8}$ (by the stronger form of the Brauer-Suzuki theorem). This leaves the case $C \cong D_{8}$.
Theorem
If $G=G^{\prime}$ and $\tau \in G$ is an involution with centralizer $C_{G}(\tau) \cong D_{8}$, then
$|G|=168$ or 360 .

Proof : We know that $D \subset S \in \operatorname{Syl}_{2}(G)$. But now $Z(S) \subset Z(D)=\langle\tau\rangle$ and thus $S \subset C_{G}(\tau)=D$;i.e $D \in \operatorname{Syl}_{2}(G)$. Let $M \subset D$ be unique cyclic subgroup of order 4 and hence τ is the unique involution in M. Since $G=G^{\prime}$,problem 1 in section 7 guarantees that all involutions in D are conjugate to τ; showing that G has a single conjugacy class of involutions.
Now observe that M is a T.I. set, as $1 \neq M \cap M^{x}$ implies $\tau \in M^{x}$;i.e $\tau^{x}=\tau$ which means $x \in D \subset N_{G}(M)$. In fact $D=N_{G}(M)$, again because τ is the unique involution in M.
Let λ be a faithful linear character of M and let $\theta=\left(1_{M}-\lambda\right) \uparrow^{D}$. As $\lambda \uparrow^{D}$ is irreducible $[\theta, \theta]=3$. Also $\theta(1)=0$ and θ vanishes on
$D \backslash M$,hence Lemma 10.8 yields $\left(\theta \uparrow^{G}\right)_{M}=\theta$.As in the proof of the Brauer-Suzuki theorem this means there exist $\chi, \psi \in \operatorname{Irr}(G)$ such that $\theta \uparrow^{G}=1_{G}+\chi-\psi$. A calculation involving only D yields

$$
0=1+\chi(1)-\psi(1)
$$

and

$$
4=1+\chi(\tau)-\psi(\tau) .
$$

Now we argue as in the proof of the Brauer-Suzuki theorem using class sums.

Again we let $C=\tau^{G}$ and let

$$
\phi(g)=|\{(x, y): x, y \in C, x y=g\}| .
$$

If $g=x y$ for involutions x, y, then $g^{x}=g^{-1}$ and conversely if $x \neq g$ and $g^{x}=g^{-1}$, then $y=x g$ is and involution. So
$\phi(g)=\left|\left\{x \in C: x \neq g, g^{x}=g^{-1}\right\}\right|$.
If $1 \neq g \in M$ and $g^{x}=g^{-1}$, then $\tau^{x}=\tau$, hence $x \in D$. Thus x is an involution in $D \backslash\{\tau\}$ and thus $\phi(g)=4$.As in the proof of Brauer-Suzuki we see that

$$
\phi=\frac{|C|^{2}}{|G|} \sum_{\xi \in \operatorname{Irr}(G)} \frac{\xi(\tau)^{2}}{\xi(1)} \xi
$$

As $|C|=|G| / 8$ we get

$$
\left[\theta \uparrow^{G}, \phi\right]=\frac{|G|}{64}\left(1+\frac{\chi(\tau)^{2}}{\chi(1)}-\frac{\psi(\tau)^{2}}{\psi(1)}\right) .
$$

We also know

$$
\left[\theta \uparrow^{G}, \phi\right]=\left[\left(1_{M}-\lambda\right), \phi_{M}\right]=\frac{4}{4}((1+i)+2+(1-i))=4
$$

Equating the two expressions for $\left[\theta \uparrow^{G}, \phi\right]$ yields

$$
256=2^{8}=|G|\left(1+\frac{\chi(\tau)^{2}}{\chi(1)}-\frac{\psi(\tau)^{2}}{\psi(1)}\right)
$$

Now set $a=\chi(1)$ and $b=\chi(\tau)$ which implies that $\psi(1)=a+1$ and $\psi(\tau)=b-3$ and use the second orthogonality relation to conclude that

$$
8=\left|C_{G}(\tau)\right| \geq 1+b^{2}+(b-3)^{2}=2\left(b^{2}-3 b+5\right) .
$$

As $b \in \mathbb{Z}$ we see that $b=1$ or 2 .
So $b=1$ implies that

$$
2^{8}=|G|(1+1 / a-4 /(a+1))
$$

which yields

$$
|G|=2^{8} a(a+1) /(a-1)^{2}
$$

Now 2 divides $a(a+1)$ which forces that 8 is a divisor of $(a-1)$. The later shows that $a(a+1)$ is congruent to 2 modulo 4 . In turn, as $|P|=8$, this shows that 16 is not a divisor of $(a-1)$. Now no odd prime divisor of $a-1$ can divide $2^{8} a(a+1)$ and thus $8=a-1$ and

$$
|G|=2^{8} \times 9 \times 10 / 2^{6}=360 .
$$

Now $b=2$ implies that

$$
2^{8}=|G|(1+4 / a-1 /(a+1))
$$

which yields

$$
|G|=2^{8} a(a+1) /(a+2)^{2}
$$

Again no odd prime divisor of $a+2$ can divide $2^{8} a(a+1)$ and thus as above $a+2=8$ and

$$
|G|=2^{8} \times 6 \times 7 / 2^{6}=168
$$

QED
We mention without proof that
Theorem
If $G=G^{\prime}$ and $\tau \in G$ is an involution with centralizer $D:=C_{G}(\tau) \cong D_{8}$ and $|G|=168$,then $G \cong \operatorname{PSL}_{3}(2) \cong \operatorname{PSL}_{2}(7)$.

Theorem
If $G=G^{\prime}$ and $\tau \in G$ is an involution with centralizer $C_{G}(\tau) \cong D_{8}$ and $|G|=360$, then $G \cong A_{6} \cong \operatorname{PSL}_{2}(9) \cong \operatorname{PSp}_{4}(2)$.

The hypothesis that $D:=C_{G}(\tau) \cong D_{8}$ can not be weakend to $\mathrm{Syl}_{2}(G)=D_{8}$ as,for example the Sylow 2-subgroup of A_{7} is D_{8}.A similar observation can be made for the case where $C_{G}(\tau)$ is elementary abelian of order 4 and 8 respectively.Here there exist infinitely many examples. The Sylow 2 -subgroups of $\mathrm{PSL}_{2}(q)$ are elementary abelian of order 4 if $q \pm 1 \equiv 4$ mod 8 . The Sylow 2-subgroups of the Ree groups ${ }^{2} G_{2}(q), q=3^{1+2 m}$, and of the sporadic group J_{1} are elementary abelian of order 8.

