- Hematology is defined as the study of blood; the term (hemo or hemato) is derived from the Greek word for blood.
- Hematology studies normal and pathologic aspects of blood and blood cells.

Blood

- It is highly specialized tissue, along with the circulatory sys.
- The blood is the fluid of life about (7-8%) of human B.w, is highly specialized circulating tissue, and is adapted to meet the needs of the body tissues and organ systems.

The primary function of blood is

- Transport of O₂, CO₂, nutrients, and waste products, hormones.
- protection plays roles in inflammation, phagocytosis, antibody & complements and platelet factors
- Regulation act as a buffer, water balance, acid-base balance & internal communication.
- Regulation and equalizing of internal body temperatures

The ancient presumed that blood carries a mysterious (vital force), and Roman gladiators drank it to fortify themselves for battle.

From ancient Egypt to the 19th century, physicians drained bad blood from their patients to treat everything from gout to headaches.

Little information was known about blood until the first microscopes revealed the blood cell.

CELECTED	SCIENTIFIC I	DEVEL	OPMENTS	RELEVANT	TO	HEMATOLOGY
SFIFE IED	SCIENTIFIC	DLILL	OTTITLE	******		TITLITUTE OF CALL

- 1628 Blood circulation described by William Harvey (1578-1657) in England
- -1674 First description of red blood cells, by Antonj van Leeuwenhoek (1623-1723) in Holland
- 1772 Plasma clotting factors described by William Henson (1739-1774)
- 1773 First descriptions of white blood cells, by William Henson in England
 - 1830 Compound microscope developed
 - 1843 First hematology monograph published, in France by Gabriel Andral (1797-1876)
- -1845 Leukemia described as a distinct disease by Rudolf Virchow (1821-1902) in Germany and John Bennett (1812-1875) in Scotland
 - 1851 Hemoglobin discovered by Otto Funke in Germany; first blood cell counts published, by Karl Vierordt in Germany
 - 1858 Fibrinogen isolated by Denis de Commercy in France and Olaf Hammarsten in Uppsala
 - 1865 Red blood cell function described by Felix Hoppe-Seyler (1825-1895) in Germany
 - 1869 Bone marrow identified as source of blood cells by Ernst Neumann (1834-1918) in Germany and Giulio Bizzozero (1846-1901) in Italy
 - 1870 Leukemia identified as a disease of the bone marrow by Neumann
 - 1879 Paul Ehrlich (1854-1915) in Germany develops white blood cell differential count and tri-acid staining technique
 - 1886 Phagocytosis described by Ilya Metchnikov (1845-1916), a Russian
 - 1890 Anticoagulants based on calcium removal described by Arthus and Pages in Switzerland
 - A DO bland groups discoursed by Varl I and spinor (1060 1042) in Augeri

III JWILL CHAILO

- 1900 ABO blood groups discovered by Karl Landsteiner (1868-1943) in Austria
- 1902 May-Grünwald stain and Wright stain (1906) introduced for blood smears
- 1905 Common coagulation pathway proposed by Paul Morawitz (1879-1936) in Germany
- 1906 Platelets accurately characterized by James Wright (1869-1938) in Boston
- 1910 Sickle-cell anemia presented as a disease by James Herrick in Chicago
- 1925 Thalassemia described by Thomas Cooley in Detroit
- 1926 Studies on lymphocytes and cell-mediated immunity by James Murphy in New York
- 1927 Sternal puncture technique utilized by Mikhail Arinkin (1876-1948) in Russia; makes possible routine bone marrow examination
- 1929 Closed-tube hematocrit introduced by Maxwell Wintrobe in the United States
- 1931-1949 Red cell metabolism and enzymes detailed by Otto Warburg (1883-1970), Gustav Embden (1874-1933), and Otto Meyerhof (1884-1951) in Germany
 - 1936 Prothrombin assays introduced; expand understanding of coagulation mechanism
 - 1950 Ferrokinetic studies used to study iron turnover
 - 1957 Introduction of automated cell counters to the clinical laboratory
 - 1961 Hematopoietic stem cell demonstrated by transplantation and irradiation techniques; platelet aggregation with ADP studied in Sweden
 - 1969 T and B lymphocytes characterized
 - 1975 Kohler and Milstein describe the production of monoclonal antibodies by cells in tissue culture

- Blood is a connective tissue composed of two portions: The liquid portion is called plasma, about (55% of the whole blood), and the solid part is called cellular components, about (45%).
- **Plasma** (55%) is a liquid portion of the blood and consists of a large number of organic & inorganic substances (solutes (9%)) dissolved in water (solvent (91%)).
 - <u>Water</u>, The most important part of a plasma, represents about 91% of the plasma and about 9% represent other solutes.

The primary function of water

- __ acts as a polar solvent for blood cells and other components of the blood
- __ acts as temperature regulation of the body in two ways 1- radiation and 2evaporation of water from the skin.

<u>Different solutes</u> (9%) include mostly

P. protein, salts, ions (Na⁺, K⁺, Ca⁺², Mg+, Zn+, Cl⁻ and HCO₃ plays an essential role in acid-base in the body) 's balance of gasses, hormones, nutrients, wastes (uric acid, urea & creatinine), and enzymes.

A- <u>Plasma protein</u> (7%) is formed mainly in the liver and classified according to (or function, structure) their solubility in the water

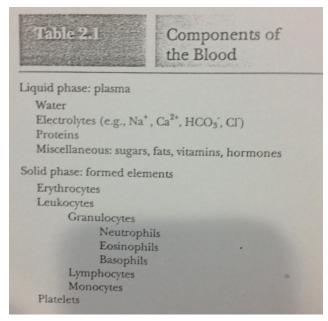
Albumins (soluble in water) are the smallest & most abundant p. protein.

- - Which contribute to viscosity, osmotic pressure, & blood volume.
- - helps buffer blood
- - transports many solutes by binding to them, like drugs, penicillin, pigments, fatty acids, bile salts and hormones.

Globulins (not soluble in water)

Some are involved in clotting.

Some are enzymes.


Globulins are divided into 3 types (α, β, γ) according to their speed in the electrophoretic medium.

- **alpha globulins** ($\alpha 1$ and $\alpha 2$)(e.g., the proteins that transport thyroxine and retinol [vitamin A])

- beta globulins (e.g., the iron-transporting protein transferrin). Fibrinogen is a soluble precursor to fibrin. That forms the framework of a blood clot.
 LDL and plasminogen
- Gamma globulins.
 - Gamma globulins are the least negatively-charged serum proteins.
 - Most antibodies are gamma globulins. Therefore gamma globulins become more abundant following infections or immunizations.

Functions of plasma proteins

- Carrier proteins; many plasma proteins act as carriers for many compounds (called carrier proteins).
- Regulation of the movement of water between the intravascular and extravascular fluid components (osmotic pressure of the albumins maintains the balance between them)
- Coagulation; is carried out by the same plasma proteins ((plugging any breaks in the circulatory system).
- Immunoglobulins (antibodies produced by certain lymphocytes against pathogens)

Table 2		lectrolyte Comp f Blood (mEq/)	
Cations	Plasma	Anions	
Na ⁺	142	HCO ₃	27
K ⁺	5	Cl	103
Ca ²⁺	5	Protein	16
K ⁺ Ca ²⁺ Mg ²⁺	3	Miscellaneous	9
Total	155		155
	Erythrocytes		
K ⁺	125	HCO ₃	20
Na ⁺	30	Cl	74
Mg ²⁺	12	Miscellaneous	_73
Total	167		167

	Plasma Concentration	the Major Plasma Pro	
Plasma Protein	(g/L)	Molecular Weight (daltons)	Functions
Albumin	40.0	69,000	Regulation and maintenance of plasma volume and distribution of extracellula fluid. Also functions as a carrier protein
α _I -Globulins			
α ₁ -Antitrypsin	3.0	45,000	
HDLs (high-density lipoproteins)	0.5	200,000	Anticoagulant effect Lipid transport
α ₂ -Globulins			
Ceruloplasmin	0.4	160,000	Copper transport
Haptoglobins	1.2	95,000	Types of glycoproteins that bind free hemoglobin to conserve iron.
α ₂ -Macroglobulin	3.0	100 000	
VLDLs (very low-density lipoproteins)	1.0	800,000 10,000,000	Anticoagulant effect Lipid transport
β-Globulins			
Transferrin	3.0	90,000	Iron transport
Hemopexin	1.0	80,000	Binds ferriheme
C ₃ (β _{1C} -globulin)	1.2	220,000	Component of complement pathway
C ₄ (β _{1E} -globulin)	0.4	240,000	Component of complement pathway
Plasminogen	0.7	140,000	Fibrinolysis
Fibrinogen	3.0	350,000	Fibrin formation
LDLs (low-density lipoproteins)	1.0	2,300,000	Lipid transport
y-Globulins			
Immunoglobulins			
gA	2.5	170,000	Each Ig group has different antibot
gD	0.03	180,000	functions. They move mainly as y-glob
gE	Trace	200,000	lins on zone electrophoresis, but son
gG	10.0	150,000	migrate as β-globulins or as αrglobuling
gM	1.0	900,000	

Cellular components (about 45% of blood) are include

a- Red blood cells or erythrocytes (95%)

__ High surface area/volume ratio

These corpuscles lack a nucleus and organelles; they contain hemoglobin & distribute oxygen. RBC is marked by proteins that define different blood groups.

- __ Biconcave disc thin center, thick edges (2.0 μm thick and 7.5 μm diameter)
- __ Flexible easily deforms to fit through narrow capillaries

b- Leukocytes (WBC) 3% of blood cells

Are true cells, larger than RBC, about 8 μm in diameter, the main function in the protection of the body as part of the immune system, attack & destroy bacteria & pathogens and remove dead cells and tissues

Most WBC has pseudopodia; they squeeze out of capillaries into tissue spaces. They are classified according to their structure and affinity for various dyes.

• Granulocyte

- Neutrophils, Band cells or PMNs, about (60-70%). Are multi-lobed nuclei and abundant cytoplasmic granules, they have little affinity for either dye or called microphage outside blood vessels
- Eosinophils (1-4%). The granules take up red dye eosins. Attack parasites and phagocyte antigen-antibody complexes.
- <u>Basophils</u> (0.1%). The granules have an affinity for blue dye. They secrete anticoagulant and vasodilator substances as histamines and serotonin.
- **Monocyte** (2-8%).
- They are long-lived cells &
- largest of the circulating WBC, with a diameter of 17-24 μ m,
- they have large C or S-shaped nuclei,
- The pale cytoplasm and several granules are called macrophages outside blood vessels.

Lymphocytes

- A second most common type of WBC (20-35%)
- Small cells / large round dense stained nuclei occupy the cells.
- 1- B Lymphocytes (10-15%) produce antibodies and act as humoral immunity (B= bursa of Fabricius in the bird)
- 2- T Lymphocytes (75-80%)

- cytotoxic T (T_c) acts as cell-mediated immunity
- Helper T cells (T_H) , activate B cell and T cells (T= matured in the thymus)

3- Natural killer cells (10%)

Platelet functions are

Are large lymphocytes present, the cytoplasm contains several reddish-purple granules

• Platelets 1 % (250x 103 platelet/µm)

Are fragments of cytoplasm produced from megakaryocytes, round or oval, have a very invaginated surface area and short life span1-2weeks

Secrete vasoconstrictors		
Promote homeostasis		

__ Stimulate the formation of clot-dissolving enzymes to remove clots; because clots are

not permanent, after repair, the clots are removed by platelets action