

Distributed Generation Chapter Three

Microturbine Generator

By:
Sarkar Jawhar
MSc in Electrical Engineering

Contents of This Lecture

- Introduction
- MTG Main Components
- Technical Background
- Mechanical System
- Electrical and Control System
- MTG Block Diagram
- Operational Modes
- Advantage and Disadvantage
- Applications

Introduction

- Microturbine generator systems are considered as distributed energy resources which are interfaced with the electric power distribution system.
- They are most suitable for small to medium-sized commercial and industrial loads.
- The microturbine provides input mechanical energy for the generator system, which is converted by the generator to electrical energy.

MTG Main Components

Technical Background

- MTG's are small, high speed power plants that usually include the turbine, compressor, generator and power electronics to deliver the power to the grid.
- These small power plants typically operate on natural gas.
- In general MTG can be divided into three primary subsystems: Mechanical, Electrical and Control, and Fuel.

Mechanical System

- Mechanically the MTG is a single shaft, gas turbine with compressor, power turbine and permanent magnet alternator being mounted on the same shaft.
- The MTG incorporates centrifugal flow compressors and radial inflow turbine.
- During engine operation, engine air is drawn into the unit and passes through the recuperator where temperature is increased by hot exhaust gases.

Mechanical System

- The air flows into the combustor where it is mixed with fuel, ignited and burnt.
- The ignitor is used only during start up and then the flame is self-sustaining.
- The combusted gas passes through the turbine nozzle and turbine wheel converting the thermal energy of the hot expanding gases to rotating mechanical energy of the turbine.

Mechanical System

- The turbine drives the compressor and the generator.
- The gas exhausting from the turbine is directed back through the recuperator and then out of the stack.
- MTG's have a high speed gas turbine engine driving an integral electrical generator that produces 30-250 KW power while operating at a high speed generally in the range of 50,000-120,000 rpm.

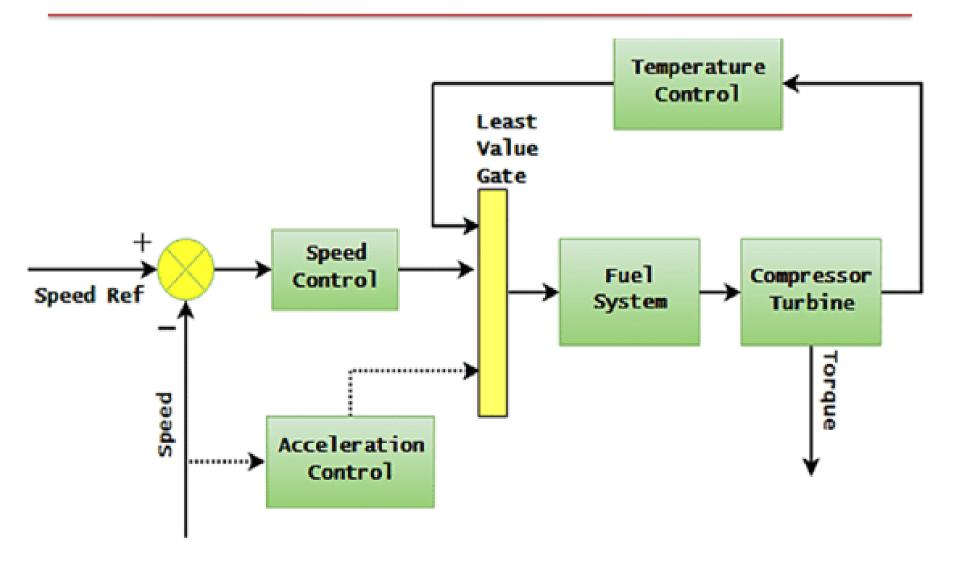
Electrical and control system of MTG including:

- 1. Engine Controller.
- 2. Power Conditioning System.
- 3. Power Controller.

Engine Controller: It's features includes :

- Automated start sequence
- Battery or utility start
- Gas or liquid fuel algorithm
- Recuperated or simple cycle engines
- Fault detection and protection
- Advanced user interface

The design is fully digital to give it the flexibility of adaptation to different engine types and makes it more precise.


Power Conditioning System

- Converts the unregulated, variable-frequency output of the alternator into a high quality, regulated waveform.
- The system can be selected to operate as a stand-alone power source [island mode] and in parallel with a site utility supply [utility mode].
- Manages the interaction with any applied load both in stand-alone and utility connect modes.

Power Controller

- The overall power conversion process is managed by an advanced microprocessor-based control system.
- Control algorithms and filtering techniques allows the system to maintain under 3% voltage distortion level.
- Fault-clearing feature permits the supply of short duration overload current to operate a circuit breaker.
- This prevents interruption to the remaining site load in the event of localized load faults.

MTG Block Diagram

Operational Modes

There are two modes of operation: Island and Utility.

Island mode operation allows the generator system to supply a load without a site utility supply present.

 Typical applications include supply of electrical power in isolated locations, mobile applications and emergency power in the case of utility failure.

Utility mode operation allows the system to operate in parallel with the utility.

This mode is cost effective.

Operational Modes

- There are three modes under Utility mode operation:
- Export mode: the system can export power to the utility and meet current harmonic limits as specified.
- Load following mode: allows on-site power generation to be balanced with site demand resulting in zero power flow to the utility. This maximizes the benefit of embedded generation.
- Peak demand mode: the system can be operated just during times of peak demand which reduces the tariff.

Advantage and Disadvantage

ADVANTAGE

- Cheap and easy installation and maintenance
- Less emission level and noise production
- Wide range of benefits in terms of operational and fuel flexibility, service performance and maintainability.

DISADVANTAGE

Time-variable electrical and thermal demand distorts
 MTG's energy balance sometimes leading to larger fuel requirement.

Applications

- Distributed power generation
- Stand-alone power
- Backup/standby power
- Primary power with grid as backup
- Micro grid
- Resource recovery
- Combined heat and power (co-generation)
- Transportation applications

Next Lecture

Solar Energy

Questions and Thank you

