Salahaddin University-Erbil College of Engineering
 Department of Water Resources Engineering Second Year Students $1^{\text {st }}$ Semester 2020-2021

Mathematics III
 Vectors (Chap. 12)

Sarkawt H. Muhammad
Edmodo Code: 2rd23z

sarkawt.muhammad@su.edu.krd

Vectors

- Some of the things we measure are determined simply by their magnitudes.
- To record mass, length, or time, for example, we need only write down a number and name an appropriate unit of measure.
- We need more information to describe a force, displacement, or velocity and it is called a vector.
- To describe a force, we need to record the direction in which it acts as well as how large it is.
- To describe a body's displacement, we have to say in what direction it moved as well as how far.
- To describe a body's velocity, we have to know its direction of motion, as well as how fast it is going

Vectors (Cont.)

A quantity such as force, displacement, or velocity is called a vector and is represented by a directed line segment. The arrow points in the direction of the action and its length gives the magnitude of the action.

DEFINITIONS

- The vector represented by the directed line segment $\overrightarrow{\boldsymbol{A B}}$ has initial point \mathbf{A} and terminal point \mathbf{B} and its length is denoted by $|\stackrel{\rightharpoonup \boldsymbol{A B}}{ }|$.
- Two vectors are equal if they have the same length and

Initial
point

Terminal direction.

Vectors (Cont.)

\mathbf{v} is a two-dimensional vector in the plane, the component form \mathbf{v} of is:

$$
\mathbf{v}=\left(v_{1}, v_{2}\right)
$$

\mathbf{v} is a three-dimensional vector in the space, the component form of \mathbf{v} is:

$$
\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)
$$

$v_{1}=$ horizontal component, $v_{2}=$ Vertical Component, and $v_{3}=$ perpendicular component.
If \mathbf{v} is two-dimensional with $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ as points in the plane, then the standard position vector \mathbf{v} is:

$$
\mathbf{v}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}\right)
$$

Two vectors are equal if and only if their standard position vectors are identical.

Vectors Length

The magnitude or length of the vector $\mathbf{v}=\overrightarrow{P Q}$ is the nonnegative number.

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

EXAMPLE 1

Find the (a) component form and (b) length of the vector with initial point $\mathrm{P}(-3$, $4,1)$ and terminal point $Q(-5,2,2)$.

Vector Algebra Operations

DEFINITIONS

Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ be vectors with k : scalar.
Addition: $\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$ scalar multiplication: $k \mathbf{u}=\left(\mathrm{k} u_{1}, \mathrm{k} u_{2}, \mathrm{k} u_{3}\right)$

Vector Algebra Operations (Cont.)

- product $k \mathbf{u}$ of the scalar k and vector \mathbf{u} :

If $k>0$, then $k \mathbf{u}$ has the same direction as \mathbf{u}; if $k<0$, then the direction of $k \mathbf{u}$ is opposite to that of \mathbf{u}. The length of $k \mathbf{u}$ is the absolute value of the scalar k times the length of \mathbf{u}.

$$
\begin{aligned}
|k \mathbf{u}| & =\sqrt{\left(k u_{1}\right)^{2}+\left(k u_{2}\right)^{2}+\left(k u_{3}\right)^{2}}=\sqrt{k^{2}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)} \\
& =\sqrt{k^{2}} \sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}=|k||\mathbf{u}| .
\end{aligned}
$$

- The vector $(-1) \mathbf{u}=-\mathbf{u}$ has the same length as \mathbf{u} but points in the opposite direction.
- The difference $\mathbf{u}-\mathbf{v}$ of two vectors is defined by

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v}) .
$$

If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then $\mathbf{u}-\mathbf{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right)$

Properties of Vector Operations

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors and a, b be scalars.
$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
$(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
$\mathbf{u}+\mathbf{0}=\mathbf{u}$
$\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
$0 \mathbf{u}=\mathbf{0}$
$1 \mathbf{u}=\mathbf{u}$
$a(b \mathbf{u})=(a b) \mathbf{u}$
$a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$
$(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$

Properties of Vector Operations (Cont.)

We can take advantage of vector properties to make operations, for example:

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\left(u_{1}, u_{2}, u_{3}\right)+\left(v_{1}, v_{2}, v_{3}\right) \\
& =\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right) \\
& =\left(v_{1}+u_{1}, v_{2}+u_{2}, v_{3}+u_{3}\right) \\
& =\left(v_{1}, v_{2}, v_{3}\right)+\left(u_{1}, u_{2}, u_{3}\right) \\
& =\mathbf{v}+\mathbf{u}
\end{aligned}
$$

EXAMPLE 2

Let $\mathbf{u}=(-1,3,1)$ and $\mathbf{v}=(4,7,0)$. Find the components of
(a) $2 \mathbf{u}+3 \mathbf{v}$,
(b) $\mathbf{u}-\mathbf{v}$,
(c) $\left|\frac{1}{2} \mathbf{u}\right|$.

Unit Vectors

A vector \mathbf{v} of length 1 is called a unit vector. The standard unit vectors are:
$\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$
Any vector $\mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$ can be written as a linear combination of the standard unit vectors as follows:

$$
\begin{aligned}
\mathbf{v} & =\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{1}, 0,0\right)+\left(0, v_{2}, 0\right)+\left(0,0, v_{3}\right) \\
& =v_{1}(1,0,0)+v_{2}(0,1,0)+v_{3}(0,0,1) \\
& =v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
\end{aligned}
$$

We call the scalar (or number) v_{1} the \mathbf{i}-component of the vector \mathbf{v}, v_{2} the \mathbf{j}-component, and v_{3} the \mathbf{k}-component.
(Vector between two points) the component form for the vector from $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is:

$$
\stackrel{\rightharpoonup}{P_{1} P_{2}}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k}
$$

Direction of vector

If $\mathbf{v} \neq \mathbf{0}$, then its length $|\mathbf{v}|$ is not zero: $\left|\frac{1}{|\mathbf{v}|} \mathbf{v}\right|=\frac{1}{|\mathbf{v}|}|\mathbf{v}|=1$
That is, $\mathbf{v} /|\mathbf{v}|$ is a unit vector in the direction of \mathbf{v}, called the direction of the nonzero vector \mathbf{v}.

Summary

If $\mathbf{v} \neq \mathbf{0}$, then

1. $\frac{v}{|v|}$ is a unit vector called the direction of \mathbf{v};
2. the equation $\mathbf{v}=|\mathbf{v}| \frac{\mathbf{v}}{|\mathbf{v}|}$ expresses \mathbf{v} as its length times its direction.

EXAMPLE 3

Find a unit vector \mathbf{u} in the direction of the vector from $P_{1}(1,0,1)$ to $P_{2}(3,2,0)$.

Direction of vector (Cont.)

EXAMPLE 4

A force of 6 newtons is applied in the direction of the vector $v=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Express the force \mathbf{F} as a product of its magnitude and direction.

Midpoint of a Line Segment

The midpoint M of the line segment joining points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is the point:

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

EXAMPLE 5

Find the midpoint of the segment joining

$$
P_{1}(3,-2,0) \text { and } P_{2}(7,4,4)
$$

