Salahaddin University-Erbil College of Engineering
 Department of Water Resources Engineering Second Year Students $1^{\text {st }}$ Semester 2020-2021

Mathematics III

Polar Coordinates (Chap. 10)

$5^{\text {th }}$ lecture

Sarkawt H. Muhammad
sarkawt.muhammad@su.edu.krd

Edmodo Code: 2rd23z

What we learned from previous class

- Polar Coordinates

Polar Equations

If hold r fixed at a constant value $r=a \neq 0$, the point $P(r, \theta)$ will lie $|a|$ units from the origin O. As θ varies over any interval of length 2π P then traces a circle of radius $|a|$ centered at O

If hold θ fixed at a constant value $\theta=\theta_{0}$ let r vary between $-\infty$ and ∞, The point $P(r, \theta)$ traces the line through O that
 makes an angle of measure θ_{0} with the initial ray
$r=a$ circle radius $|a|$ centered at O
$\theta=\theta_{0}$ Line from O making θ_{0} with the initial ray

Polar Equations (Cont.)

EXAMPLE 1

Graph the sets of points whose polar coordinates satisfy the following conditions:
(1) $1 \leq r \leq 2$ and $0 \leq \theta \leq \frac{\pi}{2}$
(2) $-3 \leq r \leq 2$ and $\theta=\frac{\pi}{4}$
(3) $r \leq 0$ and $\theta=\frac{\pi}{4}$
(4) $\frac{2 \pi}{3} \leq \theta \leq \frac{5 \pi}{6}$ no restriction on r

Relating Polar and Cartesian Coordinates

- Both polar and Cartesian coordinates in a plane, place the two origins together.
- Let the initial polar ray be the positive x-axis.
- The ray $\theta=\pi / 2, \mathrm{r}>0$, becomes the positive y -axis

The two coordinate systems are then related by the following equations.
If x and y are given, the third equation gives two possible çhoices for r (a positive and a negative value)
For each $(x, y) \neq(0,0)$ there is a unique $\theta \in[0,2 \pi]$

$$
\begin{align*}
& x=r \cos \theta \tag{1}\\
& y=r \sin \theta \tag{2}\\
& r^{2}=x^{2}+y^{2} \\
& \tan \theta=\frac{y}{x} \tag{3}
\end{align*}
$$

Relating Polar and Cartesian Coordinates (Cont.)

EXAMPLE 2

Convert the following Polar equation to Cartesian (x, y) equivalent equations:

Polar equation

(1) $r \cos \theta=2$
(2) $r^{2} \cos \theta \sin \theta=4$
(3) $r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=1$
(4) $r=1+2 r \cos \theta$
(5) $r=1-\cos \theta$

Relating Polar and Cartesian Coordinates (Cont.)

EXAMPLE 3

Find a polar equation for the circle $x^{2}+(y-3)^{2}=9$

EXAMPLE 4

Replace the following polar equations by equivalent Cartesian equations:
(a) $r \cos \theta=-4$
(b) $r^{2}=4 r \cos \theta$
(c) $r=\frac{4}{2 \cos \theta-\sin \theta}$

