

Salahaddin University-Erbil College of Engineering Department of Water Resources Engineering Second Year Students 1st Semester 2020-2021

Mathematics III Polar Coordinates (Chap. 10) 5th lecture

Edmodo Code: 2rd23z

Sarkawt H. Muhammad

sarkawt.muhammad@su.edu.krd

What we learned from previous class

Polar Coordinates

Polar Equations

If hold *r* fixed at a constant value $r = a \neq 0$, the point $P(r, \theta)$ will lie |a| units from the origin *O*. As θ varies over any interval of length 2π *P* then traces a circle of radius |a| centered at *O*

If hold θ fixed at a constant value $\theta = \theta_0$ let r vary between $-\infty$ and ∞ , The point $P(r, \theta)$ traces the line through O that makes an angle of measure θ_0 with the initial ray

r = a circle radius |a| centered at O $\theta = \theta_0$ Line from O making θ_0 with the initial ray

Polar Equations (Cont.)

EXAMPLE 1

Graph the sets of points whose polar coordinates satisfy the following conditions:

(1) $1 \le r \le 2$ and $0 \le \theta \le \frac{\pi}{2}$ (2) $-3 \le r \le 2$ and $\theta = \frac{\pi}{4}$ (3) $r \le 0$ and $\theta = \frac{\pi}{4}$ (4) $\frac{2\pi}{3} \le \theta \le \frac{5\pi}{6}$ no restriction on r

Relating Polar and Cartesian Coordinates

- Both polar and Cartesian coordinates in a plane, place the two origins together.
- Let the *initial polar ray* be the *positive x-axis*.
- The ray $\theta = \pi/2$, r > 0, becomes the positive y-axis

The two coordinate systems are then related by the following equations.

If x and y are given, the third equation gives two possible choices for r (a positive and a negative value)

For each $(x, y) \neq (0, 0)$ there is a unique $\theta \in [0, 2\pi]$

$$x = r \cos \theta \quad -----(1)$$

$$y = r \sin \theta \quad -----(2)$$

$$r^{2} = x^{2} + y^{2} \quad -----(3)$$

$$\tan \theta = \frac{y}{x} \quad -----(4)$$

Relating Polar and Cartesian Coordinates (Cont.)

EXAMPLE 2

Convert the following Polar equation to Cartesian (*x*, *y*) equivalent equations:

Polar equation

(1) $r \cos \theta = 2$ (2) $r^2 \cos \theta \sin \theta = 4$ (3) $r^2 \cos^2 \theta - r^2 \sin^2 \theta = 1$ (4) $r = 1 + 2r \cos \theta$ (5) $r = 1 - \cos \theta$

Relating Polar and Cartesian Coordinates (Cont.)

EXAMPLE 3

Find a polar equation for the circle $x^2 + (y - 3)^2 = 9$

EXAMPLE 4

Replace the following polar equations by equivalent Cartesian equations:

(a)
$$r\cos\theta = -4$$

(b)
$$r^2 = 4r\cos\theta$$

(c)
$$r = \frac{4}{2\cos\theta - \sin\theta}$$