Salahaddin University-Erbil
 College of Engineering
 Department of Water Resources Engineering $1^{\text {st }}$ Semester
 2020-2021

Mathematics III

Functions of Several Variables (Ch. 14)
$19^{\text {th }}$ lecture

Sarkawt H. Muhammad
Edmodo Code:
2rd23z
sarkawt.muhammad@su.edu.krd

Some Notes about Partial Derivatives

1. If $z=f(x)$, a function of single independent variable x, we get $d z / d x$.
2. If $z=f\left(x_{1}, x_{2}, \ldots x_{\mathrm{n}}\right)$, a function of two or more independent variables
$x_{1}, \boldsymbol{X}_{2}, \ldots, x_{n}$, we get $\frac{\partial z}{\partial x_{1}}, \frac{\partial z}{\partial x_{2}}, \ldots, \frac{\partial z}{\partial x_{n}}$
3. If $z=u+v$, where $u=f(x, y), v=\phi(x, y)$ then z is a function of x and y.

$$
\frac{\partial z}{\partial x}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x} ; \quad \frac{\partial z}{\partial y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
$$

4. If $z=u v$, where $u=f(x, y), v=\phi(x, y)$ then:

$$
\frac{\partial z}{\partial x}=\frac{\partial}{\partial x}(u v)=u \frac{\partial v}{\partial x}+v \frac{\partial u}{\partial x} ; \quad \frac{\partial z}{\partial y}=\frac{\partial}{\partial y}(u v)=u \frac{\partial v}{\partial y}+v \frac{\partial u}{\partial y}
$$

5. If $z=\frac{u}{v}$, where $u=f(x, y), v=\phi(x, y)$ then:

$$
\frac{\partial z}{\partial x}=\frac{\partial}{\partial x}\left(\frac{u}{v}\right)=\frac{v \frac{\partial u}{\partial x}-u \frac{\partial v}{\partial x}}{v^{2}} ; \quad \quad \frac{\partial z}{\partial y}=\frac{\partial}{\partial y}\left(\frac{u}{v}\right)=\frac{v \frac{\partial u}{\partial y}-u \frac{\partial v}{\partial y}}{v^{2}}
$$

Higher Order Partial Derivatives

Since the first order partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are themselves function of \boldsymbol{x} and \boldsymbol{y} they can be further differentiates partially w.r.t \boldsymbol{x} as well as \boldsymbol{y}. These are called second order partial derivatives of \boldsymbol{z}. The usual notations for these second order derivatives are:

$$
\begin{array}{lll}
\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x^{2}} & \text { or } \boldsymbol{f}_{\boldsymbol{x} x}(\boldsymbol{x}, \boldsymbol{y}) ; & \frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y^{2}} \text { or } \boldsymbol{f}_{\boldsymbol{y} \boldsymbol{y}}(\boldsymbol{x}, \boldsymbol{y}) \\
\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial y \partial x} & \text { or } \boldsymbol{f}_{\boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{y}) ; & \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial x \partial y} \text { or } \boldsymbol{f}_{\boldsymbol{y} \boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{y}) \\
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x} \quad \text { or } \quad \boldsymbol{f}_{\boldsymbol{y} \boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{f}_{\boldsymbol{x} \boldsymbol{y}}(\boldsymbol{x}, \boldsymbol{y}) & &
\end{array}
$$

$$
\boldsymbol{f}_{y x}=\left(\boldsymbol{f}_{y}\right)_{x} \text { Differentiate first with respect to } y \text {, then with respect to } x
$$

Higher Order Partial Derivatives

EXAMPLE 1

If $z=x \cos y+y e^{x}$, find $\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial y \partial x}, \frac{\partial^{2} z}{\partial y^{2}}, \frac{\partial^{2} z}{\partial x \partial y}$
EXAMPLE 2
If $z=x^{2} y+\cos y+y \sin x$, find $\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial y \partial x}, \frac{\partial^{2} z}{\partial y^{2}}, \frac{\partial^{2} z}{\partial x \partial y}$

Chain Rule for Functions of Two Variables

The Chain Rule for functions of a single variable says that when $w=f(x)$ is a differentiable function of x and $x=g(t)$ is a differentiable function of t, w is a differentiable function of t and $d w / d t$ can be calculated by the formula:

$$
\frac{d w}{d x}=\frac{d w}{d x} \frac{d x}{d t}
$$

Chain Rule

If $w=f(x, y)$ is differentiable and if $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}=\boldsymbol{y}(\boldsymbol{t})$ are differentiable functions of t, then the composite $\boldsymbol{w}=\boldsymbol{f}(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}))$ is a differentiable function of \boldsymbol{t} and

$$
\frac{d w}{d t}=f_{x}(x(t), y(t)) * x^{\prime}(t)+f_{y}(x(t), y(t)) * y^{\prime}(t)
$$

or

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \quad \text { or } \quad \frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}
$$

$\frac{\partial w}{\partial x} \underbrace{}_{\frac{d w}{\partial y}}$| Dependent |
| :--- |
| variable |

Branch Diagram or Tree Diagram

Chain Rule for Functions of Two Variables

$\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \quad$ or $\quad \frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}$ is called chain rule for functions of one independent variable t, and two intermediate variables $\boldsymbol{x}, \boldsymbol{y}$.

The branch diagram in the margin provides a convenient way to remember the Chain Rule. The "true" independent variable in the composite function is t whereas x and y are

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}
$$ intermediate variables (controlled by t) and w is the dependent variable.

EXAMPLE 1

Use the Chain Rule to find the derivative of $w=x y$ w.r.t. t along the path $x=\cos t, y=\sin t$. What is the derivative's value at $t=\pi / 2$?

