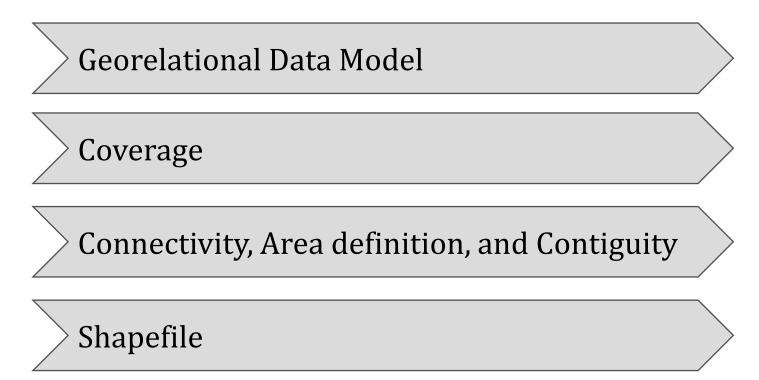


Salahaddin University-Erbil College of Engineering Water Resources Eng. Dept. Second Year Students 1st Semester 2020-2021

Introduction to GIS Vector Data Model 9th Lec.

Sarkawt H. Muhammad sarkawt.muhammad@su.edu.krd

What we Learned in the Previouse class

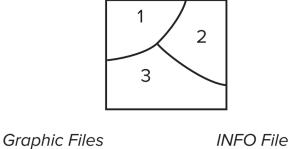

Types of Vector Data

Point, Line, Polygon

Topology

Adjacency and Incidence

Outline

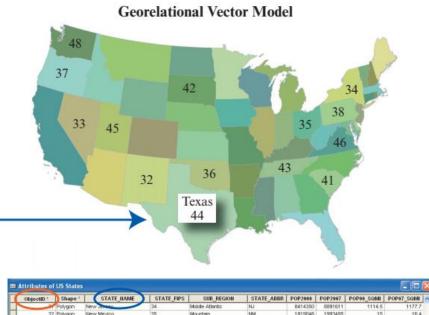

Georelational Data Model

The <u>georelational data model</u> stores geometries and attributes separately in a split system: geometries ("geo") in graphic files in a spatial subsystem and attributes ("relational") in a relational database.

The **coverage** and the **shapefile** are both examples of the georelational data model; however, the <u>coverage is topological</u>, and the <u>shapefile is nontopological</u>.

A georelational dataset uses a <u>feature ID</u> or <u>label</u> to link the spatial data with the attribute data.

The spatial features in the map layer are linked to the database via the ObjectID field in the database


Polygon/arc list

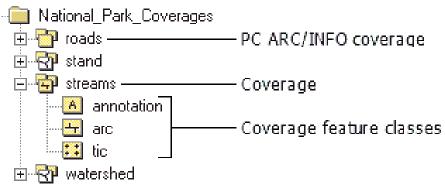
Left/right list

Arc-coordinate list

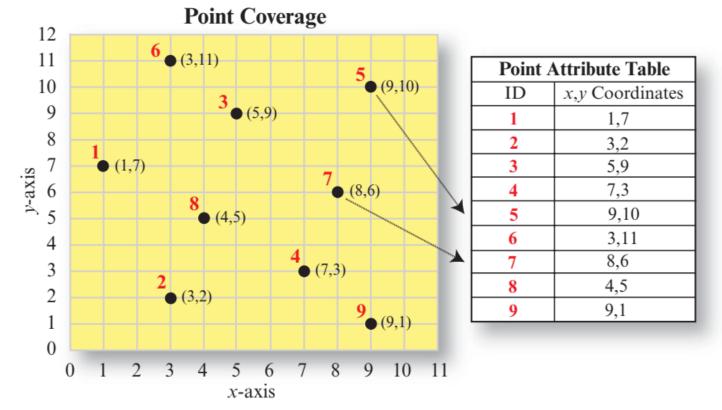
Polygon-ID	Field 1	
1		
2		
3		
	-	122

Georelational Data Model

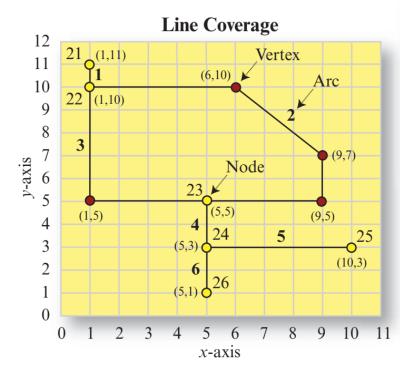
E.	ObjectID *	Shape *	STATE_IIAME	STATE_FIPS	SUB_REGION	STATE_ABBR	POP2000	POP2007	POP00_SOMI	POP07_SQMI
		Polygon	New Seree	34	Middle Atlantic	NJ	8414350	8891611	1114.5	1177.7
0	32	Polygon	New Mexico	35	Mountain	NM	1819046	1993495	15	16.4
	33	Polygon	Nevada	32	Mountain	NV	1998257	2645277	18.1	23.9
1	34	Polygon	New York	36	Middle Atlantic	NY	18976457	19581872	390.3	402.7
	35	Polygon	Ohio	39	East North Central	OH	11353140	11631492	275.2	281.9
0	36	Polygon	Oklahoma	40	West South Central	OK	3450654	3650017	49.4	62.2
	37	Polygon	Oregon	41	Pacific	OR	3421399	3752734	35.2	38.7
8	38	Polygon	Pennsylvania	42	Middle Atlantic	PA.	12281054	12642855	271.1	279.1
	39	Polygon	Puerto Rico	72	South Atlantic	PR	-99	-99	-99	-99
	40	Polygon	Rhode Island	44	New England	RI	1048319	1085885	964.4	999
	41	Polygon	South Carolina	45	South Atlantic	SC	4012012	4425765	129.6	143
	42	Polygon	South Dakota	46	West North Central	SD	754844	805562	9.0	10.4
	43	Palygon /	Tonnes ee	47	East South Central	TN	5689283	6185398	135	146.B
(F	44	Pot gon	Texas	48	West South Central	TX	20851820	23985432	78.6	90.6
	45	Pri/gon	tab	49	Mountain	UT	2233169	2610198	26.3	30.7
1	46	Polygon	Virginia	61	South Atlantic	VA	7078515	7862029	175.1	194.5
	47	Polygon	Vermont	50	New England	VT	608827	636590	63.3	66.2
<	48	Onkinne	Wheetsi-offers	63	Darifir	haca	10110	0518384	87.2	00.2 00.4
	Record: 14		1 + + Show: All	Selected	Records (1 out of 52 Sel	lected)	Options +			


Coverage

ESRI (the Environmental Systems Research Institute) introduced the coverage and its built-in topology in the 1980s to separate GIS from CAD (computer-aided design) at the time.


A **coverage** is a georelational data model that stores vector data—it contains both the *spatial* (location) and *attribute* (descriptive) data for geographic features.

<u>Coverages</u> use a set of feature classes to represent geographic features. Each feature class stores a set of points, lines (arcs), polygons, or annotation (text).


A coverage is stored in the computer as a directory. The directory name is the coverage name

A point coverage is simple: It contains the feature IDs and pairs of *x*- and *y*- coordinates

data structure of a line coverage; the starting point of an arc is the from node, and the end point is the to-node.

Arc Nodes				
Arc	From node	To node		
1	21	22		
2	22	23		
3	23	22		
4	23	24		
5	24	25		
6	24	26		

Arc Coordinates			
Arc	<i>x,y</i> Coordinates		
1	(1,11) (1,10)		
2	(1,10) (6,10) (9,7) (9,5) (5,5)		
3	(5,5) (1,5) (1,10)		
4	(5,5) (5,3)		
5	(5,3) (10,3)		
6 (5,3) (5,1)			

Polygon data-structure coverages contain a polygon Left-Right list for each arc. This information allows for studies of $\frac{3}{6}$ adjacency. Arcs that make up each polygon are found in the Polygon-Arc list. All points (nodes and vertices) that define the arcs are

found in the Arc-Coordinate list.

To show that polygon 154 is a *hole* within polygon 151, the arc list for polygon 151 contains a **zero** to separate the external and internal boundaries

Left-Right Polygons					
Arc	Arc Left Polygon Right Polygon				
1	150	151			
2	150	152			
3	150	153			
4	151	153			
5	151	152			
6	152	153			
7	151	154			

Polygon Coverage

-> (5.8)

Node

Vertex

(10,3)

(10,1)

152

6

153 3

x-axis

(10, 10)

150 = Bounding polygon

151

(3.3)

10

Polygon Arcs		
Polygon	Arc	
151	1,4,5, <mark>0</mark> ,7	
152	5,2,6	
153	6,3,4	
154	7	

Arc Coordinates		
Arc	x, y Coordinates	
1	(1,3) (1,10) (7,10)	
2	(7,10) (10,10) (10,3)	
3	(10,3) (10,1) (1,1) (1,3)	
4 (1,3) (3,3)		
5	(3,3) (7,7) (7,10)	
6	(3,3) (10,3)	
7	(3,8) (5,8) (5,6) (3,6) (3,8)	

The coverage supports three basic topological relationships:

- **Connectivity:** Arcs connect to each other at nodes.
- Area definition: An area is defined by a series of connected arcs.
- **Contiguity:** Arcs have directions and left and right polygons.

Connectivity

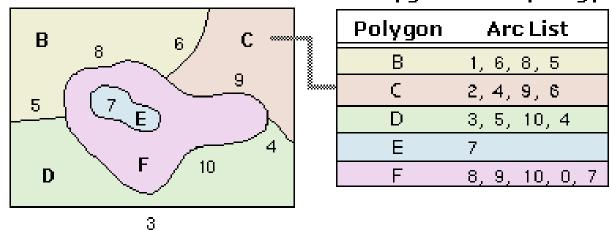
Connectivity is defined through arc-node topology. Connectivity allows to identify a route to the airport, connect streams to rivers, or follow a path from the water treatment plant to a house.

Arc-node topology is supported through an arc-node list. The list identifies the from- and to-nodes for each arc. Connected arcs are determined by searching through the list for common node numbers. Arc-Node Topology

In the example, the **arcs 1**, **2**, and **3** all intersect because they share **node 11**. The computer can determine that it is possible to travel along arc 1 and turn onto arc 3 because they share a common **node (11)**, but it's not possible to turn directly from arc 1 onto arc 5 because they don't share a common node.

(2) 10_ (1) 3 **(5)** 13 14

Arc-Node	e List
----------	--------


	Arc	From	То
		Node	Node
	1	10	11
_	2	11	12
	3	11	13
	4	13	16
	5	13	14
	6	14	15
	7	14	17

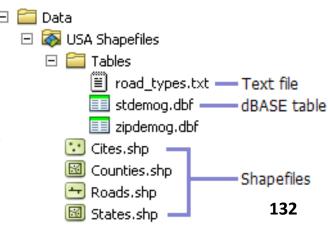
Area Definition

An area such as lakes, and parcels of land, is represented in the vector model by one or more boundaries defining a polygon.

consider a lake (**F**) with an island in the middle. The lake actually has two boundaries: **one** that defines its <u>outer edge</u> (arc 8, 9, and 10) and **the island** that defines its <u>inner edge</u> (arc 7).

In the terminology of the vector model, an island defines an inner boundary (or **hole**) of a polygon. A 1 2 Polygon-Arc Topology

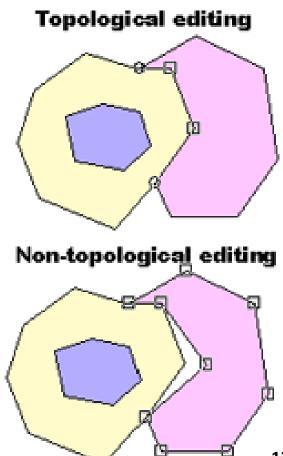
Contiguity


Two geographic features that share a boundary are called **adjacent**. Contiguity is the topological concept that allows the vector data model to determine adjacency.

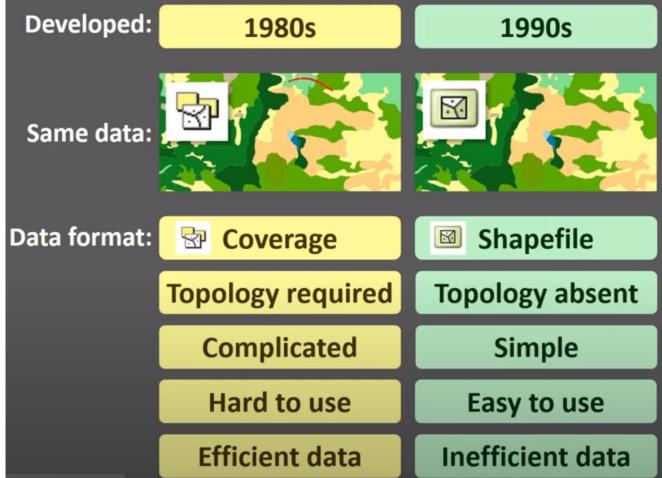
- Polygons are contiguous to each other if they share a common arc. This is the basis for many neighbor and overlay operations.
- polygon **B** is on the left of **arc 6**, and polygon **C** is on the right. Thus we know that polygons **B** and **C** are adjacent.
- Notice that the label for polygon **A** is outside the boundary of the area. This polygon is called the **external**, or **universe**, polygon and represents the world outside the study area.

Shapefile

- In less than one decade after GIS companies introduced topology to separate GIS from CAD, the same companies adopted nontopological data format.
- A shapefile is a simple, nontopological format for storing the geometric location and attribute information of geographic features.
- Geographic features in a shapefile can be represented by points, lines, or polygons (areas). The workspace containing shapefiles may also contain dBASE tables, which can store additional attributes that can be joined to a shapefile's features.
- Shapefile polygons actually have duplicate arcs for the ^E shared boundaries and can overlap one another.
- The shapefile is stored in three basic files: The *.*shp* file stores the feature geometry, the *.*shx* file maintains the spatial index of the feature geometry, and *.*dbf* the dBASE table that stores feature attributes



Shapefile


Nontopological data such as shapefiles have **two** main advantages:

First, they can display more rapidly on the computer monitor than topology based data. This advantage is particularly important for people who use, rather than produce GIS data.

Second, they can be used across different software packages .

Basic Comparison between Coverage and Shapefile

