Salahaddin University-Erbil College of Engineering Department of Chemical Engineering First Year Students 2nd Semester

Mathematics II LEC-04 Transcendental Function

Sarkawt H. Muhammad Sarkawt.muhammad@su.edu.krd

The natural logarithm of a positive number x, written as ln x, is the value of an integral.

Definition:

$$\ln x = \int_1^x \frac{1}{t} dt, \qquad x > 0$$

If x > 1, then $\ln x$ is the area under the curve y=1/t from t=1 to t=x.

For 0 < x < 1, $\ln x$ gives the negative of the area under the curve from x to1. The function is not defined for $x \le 0$.

The Zero Width Interval Rule for definite integrals

$$\ln 1 = \int_{1}^{1} \frac{1}{t} dt = 0$$

Notice that we show the graph of y = 1/xbut use y = 1/t in the integral.

Using x for everything would have us writing.

$$\ln x = \int_{1}^{x} \frac{1}{x} dx$$

The Number (e) is that number in the domain of the natural logarithm satisfying:

$\ln(e) = 1$

the area under the graph of y=1/t and above the interval [1,e] is the exact area of the unit square {in the figure, the shaded area from 1 to x}, e = 2.71828....

y
If
$$0 < x < 1$$
, then $\ln x = \int_{1}^{x} \frac{1}{t} dt = -\int_{x}^{1} \frac{1}{t} dt$
gives the negative of this area.
If $x > 1$, then $\ln x = \int_{1}^{x} \frac{1}{t} dt$
gives this area.
 $y = \ln x$
 $y = \ln x$
If $x = 1$, then $\ln x = \int_{1}^{1} \frac{1}{t} dt = 0$.
 $y = \ln x$

Derivative of $y = \ln x$

$$\frac{d}{dx}\ln x = \frac{d}{dx}\int_{1}^{x} \frac{1}{t}dt = \frac{1}{x}$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

From Chain Rule
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx} \qquad u > 0$$

Example (1):

Derivatives of Natural Logarithms

1) $\ln 2x$

2) $\ln(x^2 + 3)$

Properties Natural Logarithm (In)

- For any number a > 0 and x > 0, the natural logarith satisfies
- the following rules:

4. Power Rule:

- 1. Product Rule: $\ln ax = \ln a + \ln x$
- 2. Quotient Rule: $\ln \frac{a}{x} = \ln a \ln x$
- 3. Reciprocal Rule:

 $\ln \frac{1}{x} = -\ln x$ Rule 2 with a=1

 $\ln x^r = r \ln x$ r rational

Properties Natural Logarithm (In)

Example (2):

Interpreting the properties of logarithms

- 1) $\ln 6$
- 2) $\ln 4 \ln 5$
- 3) $\ln \frac{1}{8}$
- 4) $\ln 4 + \ln \sin x$
- 5) $\ln \frac{x+1}{2x-3}$
- 6) $\ln \sec x$
- 7) $\ln \sqrt[3]{x+1}$

Example (3): Proof that $\ln ax = \ln a + \ln x$

Integral of Natural Logarithm (In)

When u is a positive differentiable function

$$\int \frac{1}{u} du = \ln u + C$$

But if u is negative

$$\int \frac{1}{u} du = \int \frac{1}{-u} d(-u) = \ln(-u) + C$$

We can combine both equations for +ve and -ve If u is a differentiable function that is never zero ($u \neq 0$)

$$\int \frac{1}{u} du = \ln|u| + C$$
$$\int u^n du = \frac{u^{n+1}}{n+1} + c \qquad n \neq -1$$

Integral of Natural Logarithm (In)

Example (4):

Evaluate the following integrals:

 $\int_0^2 \frac{2x}{x^2 - 5} dx$

$$\int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3+2\sin\theta} d\theta$$

Example (5):

Simplify: $\ln \sqrt[3]{25}$

Example (6): Integrate: $\int \frac{6x}{3x^2 + 4} dx$

Example (7):

Differentiate:

(1)
$$y = \ln \frac{x\sqrt{x+25}}{(x-1)^3}$$
 (2) $y^{2/3} = \frac{(x^2+1)(3x+4)^{\frac{1}{2}}}{\sqrt[3]{(2x-3)(x^2-4)}}$

The integrals of an x and $ext{cot} x$

$$\int \tan u \, du = -\ln|\cos u| + C = \ln|\sec u| + C$$
$$\int \cot u \, du = \ln|\sin u| + C = -\ln|\csc u| + C$$

Example (8):

Evaluate:

$$\int_{0}^{\pi/6} \tan 2x \, dx$$

More Examples

Class Activity:

Evaluate: $\int \frac{\sec y \tan y}{2 + \sec y} dy$