University of Salahaddin / College of Engineering

Engineering Analysis
Civil Engineering Department Sazan Nariman Abdulhamid

1- Solve the DE $x y=\left(1-x^{2}\right) \frac{d y}{d x} ; \quad$ given $y=1$ when $\mathrm{x}=0$

2- Solve $x y^{3} d y=\left(x^{4}+y^{4}\right) d x$

3- Solve $\quad x . d y-y . d x=0$

4- Solve $\sinh (x) \cdot \sinh (y)+\cosh (x) \cdot \cosh (y) \cdot y^{\prime}=0$

5- Solve $\cos (x+y)+\left(3 y^{2}+2 y+\cos (x+y)\right) \cdot y^{\prime}=0$

6- Solve $(\cos \omega x+\omega \cdot \sin \omega x) d x+e^{x} d y=0$

7- Solve $[\cos x \cdot \tan y+\cos (x+y)] d x+\left[\sin x \cdot \sec ^{2} y+\cos (x+y)\right] d y=0$

8 - Solve $2 x y \cdot y^{\prime}=x^{2}+y^{2}$

9- Solve $\left(1+y^{2} \sin 2 x\right) d x-2 y \cos ^{2} x d y=0$

10- Solve $y^{\prime}+2 \cdot \sin 2 x \cdot y=2 e^{\cos 2 x}$

11- Solve $y^{\prime}=6(y-2.5) \tanh (1.5 x)$

12- Solve $y^{\prime} \cdot \cos ^{2} x+3 y=1$

13- Solve $y^{\prime}+2 y=4 \cos 2 x$

14- Solve $y^{\prime}+y=y^{3}$

15- Solve $y^{\prime}=5.7 y-6.5 y^{2}$

16- A tank initially contains 50 gallons of brine, with 30 lb of salt in solution. A brine of $1 / 6$ pounds of salt per gallon of water is added to the tank at the rate of $\mathbf{3}$ gallons per minute. The mixture in the tank is kept uniform by stirring. Brine runs out (drained) from the tank at the same rate .

Find the amount of salt in the tank at any time t?

17- A tank initially contains $\mathbf{6 0}$ gallons of brine, with 20 lb of salt in solution. A brine of $1 / 10$ pounds of salt per gallon of water is added to the tank at the rate of 5 gallons per minute. The mixture in the tank is kept uniform by stirring. Brine runs out (drained) from the tank at the rate $\mathbf{2}$ gallons per minute.
Find;
a) The amount of salt in the tank at any time t?
b) Time of overflow?
c) Amount of salt at overflow?

18- A boiling solution $\left(100^{\circ} \mathrm{C}\right)$ is set in room of temp $\left(20^{\circ} \mathrm{C}\right)$, after 5 min the solution cooled to $\left(60^{\circ} \mathrm{C}\right)$.
When will the temp. of the solution be $\left(22^{\circ} \mathrm{C}\right)$.

19- In winter season, the daytime temperature in a particular building is maintained at $70^{\circ} \mathrm{F}$. The heating shut off at $10 \mathrm{P} . \mathrm{M}$. and turned on at 6 A.M.
On a certain day the temperature inside the building at 2 A.M. was found to be $65^{\circ} \mathrm{F}$.

The outside temperature was $50^{\circ} \mathrm{F}$ at $10 \mathrm{P} . \mathrm{M}$. and had dropped to $40^{\circ} \mathrm{F}$ by $6 \mathrm{~A} . \mathrm{M}$.
What was the temp. inside the building when the heat turned on at 6 A.M.

20- A tank contains 8 L (liters) of water in which is dissolved 32 g (grams) of chemical. A solution containing $2 \mathrm{~g} / \mathrm{L}$ of the chemical flows into the tank at a rate of $4 \mathrm{~L} / \mathrm{min}$, and the well-stirred mixture flows out at a rate of $2 \mathrm{~L} / \mathrm{min}$.
a- Determine the amount of chemical in the tank after 20 minutes.
b- What is the concentration of chemical in the tank at that time?

21- A cold juice initially at $35^{\circ} \mathrm{F}$ warms up to $40^{\circ} \mathrm{F}$ in 3 min while sitting in a room of temperature $70^{\circ} \mathrm{F}$. How warm will the juice be if left out for 20 min ?

22- \quad Suppose we have an inverted conical tank with height H and radius R, suppose fluid is flowing through a hole in the bottom with cross sectional area a with velocity given by $\mathrm{V}(\mathrm{t})=\mathrm{k}[2 \mathrm{gh}(\mathrm{t})]^{1 / 2}$; where $\mathrm{h}(\mathrm{t})$ is the height of fluid in the tank.

Find the time required to empty the tank.

23- Find the lateral displacement of a hinged-hinged column (or hinged-hinged beam) of length (L) subjected to an axial load (P) and a uniform lateral distributed load (W).

24- Find the Buckling of a hinged-hinged column

25- Find the lateral displacement of a hinged-hinged column (or hinged-hinged beam) of length (L) subjected to an axial load (P) and a uniform lateral distributed load (W).

26- Solve $y^{\prime \prime}-9 y=0$

27- Solve $4 y^{\prime \prime}+y=0$

28- Solve $y^{\prime \prime}+y=0$

29- Solve $4 y^{\prime \prime}+y^{\prime}=0$

30- Solve $y^{\prime \prime}+y^{\prime}+y=0$

31- A spring with a mass 2 kg has natural length 0.5 m . A force of 25.6 N is required to maintain it stretched to a length of 0.7 m . If the spring is stretched to a length of 0.7 m and then released with initial velocity zero, find the position of the mass at any time t .

32- Solve the differential equation:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=x^{2} \ldots \ldots \ldots .(1)
$$

33- Solve the differential equation:

$$
y^{\prime \prime}-6 y^{\prime}+9 y=6 e^{3 x}
$$

34- Solve the differential equation:

$$
y^{\prime \prime}+y^{\prime}+y=x^{2}+e^{x}
$$

35- Solve the differentail equ:

$$
y^{\prime \prime}-2 y^{\prime}-3 y=e^{2 t}+3 t^{2}+4 t-5+5 \cos (2 t)
$$

36- Solve the differentail equ:

$$
y^{\prime \prime}+9 y=-4 x \sin (3 x)
$$

37- Write down the form of the particular solution to:

$$
y^{\prime \prime}+y^{\prime}+y=G(t)
$$

For the following $G(t)$'s:

$$
\begin{aligned}
& G(t)=16 e^{7 t} \cdot \sin (10 t) \\
& G(t)=\left(9 t^{2}-103 t\right) \cos t
\end{aligned}
$$

38- Write down the form of the particular solution to the following $\mathrm{G}(\mathrm{t})$:

$$
y^{\prime \prime}+y^{\prime}+y=G(t)
$$

$$
\begin{aligned}
& G(t)=e^{-2 t}(3-5 t) \cos 9 t \\
& G(t)=4 \cos (6 t)-9 \sin (6 t) \\
& G(t)=-2 \sin t+\sin (14 t)-5 \cos (14 t)
\end{aligned}
$$

39- Find the maximum deflection of simply supported beam subjected to uniform distributed load:

Deflection shape
(elastic curve)
40- Buckling of the hinged-hinged columns

41- \quad Find the lateral displacement of a hinged-hinged column (or hinged-hinged beam) of length (L) subjected to an axial load (P) and a uniform lateral distributed load (W) .

42- Buckling of the fixed-hinged columns

43- Solve; $L\left(5 e^{-3 t} \sin \right.$

44- So $L\left[2 e^{3 t}(4 \cos 2 t-5 \sin 2 t)\right\rfloor$

45- Solve;

$$
L\left\lfloor 3 e^{-2 t}(\sinh \quad 2 t-2 \cosh 2 t)\right]
$$

46- Use the Laplace transform of the Second derivative to derive:

$$
L(\sin a t)=\frac{a}{s^{2}+a^{2}}
$$

47- Use the Laplace transform of the Second derivative to derive:

$$
L(\sinh \quad a t)=\frac{a}{s^{2}-a^{2}}
$$

48- Use the Laplace transform of the Second derivative to derive:

$$
L(\cosh \quad a t)=\frac{s}{s^{2}-a^{2}}
$$

49- Use the Laplace transform of the Second derivative to determine the Laplace of:

$$
L\{t \cdot \cos \omega t\}
$$

50- Solve; $\quad \mathcal{L}^{-1}\left\{\frac{4 s-3}{s^{2}-4 s-5}\right\}$

51- Solve; $L^{-1}\left\{\frac{2(s+1)}{s^{2}+2 s+10}\right\}$

52- Solve; $L^{-1}\left\{\frac{7 s+13}{s\left(s^{2}+4 s+13\right)}\right\}$

53- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{(s+3)}{s(s-1)(s+2)}
$$

54- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{(s-1)}{s^{2}+2 s-8}
$$

55- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{3 s+7}{s^{2}-2 s+5}
$$

56- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{e^{-7 s}}{(s+3)^{3}}
$$

57- Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+13 y=0, \text { given that when } x=0, y=3 \text { and } \frac{d y}{d x}=7 .
$$

58- Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+10 y=e^{2 x}+20, \text { given that when } x=0, y=0 \quad \text { and } \quad \frac{d y}{d x}=-\frac{1}{3} .
$$

59- Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+16 y=10 \cos 4 x \quad \text {, given that when } \quad y(0)=3 \quad \text { and } \quad y^{\prime}(0)=4
$$

60- Use the convolution of the Laplace transforms to solve the differential equation:

$$
\frac{d y}{d x}-a y=e^{c t}, \text { at } \mathrm{y}(0)=0
$$

61- Find the inverse of the Laplace transform using Convolution theorem for function:

$$
H(s)=\frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

62- Use the convolution of the Laplace transforms to solve the differential equation:

$$
\begin{array}{ll}
y^{\prime \prime}+2 y^{\prime}+2 y=\sin \alpha t & y(0)=0 \\
& y^{\prime}(0)=0
\end{array}
$$

63- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{1}{s^{2}(s-1)}\right\}
$$

64- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{s}{\left(s^{2}+4\right)^{2}}\right\}
$$

65- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{1}{s\left(s^{2}+4\right)^{1}}\right\}
$$

66- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}
$$

67- Determine the Fourier series for the periodic function of period 2π

$$
f(t)=\left\{\begin{aligned}
0, & \text { when }-\pi<t<0 \\
1, & \text { when } \quad 0<t<\frac{\pi}{2} \\
-1, & \text { when } \quad \frac{\pi}{2}<t<\pi
\end{aligned}\right.
$$

68- Determine the Fourier series for the function

$$
f(x)=\left\{\begin{aligned}
-2, & \text { when }-\pi<x<-\frac{\pi}{2} \\
2, & \text { when }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
-2, & \text { when } \frac{\pi}{2}<x<\pi .
\end{aligned}\right.
$$

69- Deduce the Fourier series for the function $f(\theta)=\theta^{2}$ in the range 0 to 2π.

70- Show that the Fourier series for the function $f(x)=x$ over the range $x=0$ to $x=2 \pi$

71- Find the Fourier series for the function $f(x)=x+\pi$ within the range $-\pi<x<\pi$.

72- Determine the half-range sine series for the function defined by:
$f(x)= \begin{cases}x, & 0<x<\frac{\pi}{2} \\ 0, & \frac{\pi}{2}<x<\pi\end{cases}$

73- Obtain (a) the half-range cosine series and (b) the half-range sine series for the function

$$
f(t)= \begin{cases}0, & 0<t<\frac{\pi}{2} \\ 1, & \frac{\pi}{2}<t<\pi\end{cases}
$$

74- Find the half-range Fourier cosine series for the function

$$
f(x)=x^{2} \quad \text { in the range } \quad 0<x<3 .
$$

75- A beam of length L is simply supported at its ends and uniformly loaded by a load w. Find the deflection of the beam using Fourier series method.

76- For the beam and loading shown, find the deflection by Fourier series method.

77- For the beam and loading shown, find the equation of the deflection by Fourier Series method, then find max. deflection.

78- An elastic string is stretched
 apart. Its center point is displaced $1 . b \mathrm{~cm}$ trom its position of rest at right angles to the original direction of the string and then released with zero velocity. Determine the subsequent motion $u(x, t)$ by applying the wave equation: with $c^{2}=9$.

79- A metal bar, insulated along its sides, is 1 m long. It is initially at room temperature of $15^{\circ} \mathrm{C}$ and at time $t=0$, the ends are placed into ice at $0^{\circ} \mathrm{C}$. Find an expression for the temperature at a point P at a distance $x \mathrm{~m}$ from one end at any time t seconds after $t=0$.

80- : let $a>0$, compute the FT of

$$
f(x)=\left[\begin{array}{ll}
e^{-a x} & x \geq 0 \\
e^{a x} & x \leq 0
\end{array}\right.
$$

