Question Bank for 2022-2023 Fall Semeter
 University of Salahaddin / College of Engineering

 Engineering Analysis

 Engineering Analysis}

Civil Engineering Department

Sazan Nariman Abdulhamid

1- A tank initially contains 50 gallons of brine, with 30 lb of salt in solution. A brine of $1 / 6$ pounds of salt per gallon of water is added to the tank at the rate of $\mathbf{3}$ gallons per minute. The mixture in the tank is kept uniform by stirring. Brine runs out (drained) from the tank at the same rate.
Find;
a) The amount of salt in the tank at any time t?
b) Time of overflow?
c) Amount of salt at overflow?

2- A boiling solution $\left(100^{\circ} \mathrm{C}\right)$ is set in room of temp $\left(20^{\circ} \mathrm{C}\right)$, after 5 min the solution cooled to $\left(60^{\circ} \mathrm{C}\right)$.
When will the temp. of the solution be $\left(22^{\circ} \mathrm{C}\right)$.

3- A tank contains 8 L (liters) of water in which is dissolved 32 g (grams) of chemical. A solution containing $2 \mathrm{~g} / \mathrm{L}$ of the chemical flows into the tank at a rate of $4 \mathrm{~L} / \mathrm{min}$, and the well-stirred mixture flows out at a rate of $2 \mathrm{~L} / \mathrm{min}$.
a- Determine the amount of chemical in the tank after 20 minutes.
b- What is the concentration of chemical in the tank at that time?

4- A cold juice initially at $35^{\circ} \mathrm{F}$ warms up to $40^{\circ} \mathrm{F}$ in 3 min while sitting in a room of temperature $70^{\circ} \mathrm{F}$. How warm will the juice be if left out for 20 min ?

5- Suppose we have an inverted conical tank with height H and radius R, suppose fluid is flowing through a hole in the bottom with cross sectional area a with velocity given by $\mathrm{V}(\mathrm{t})=\mathrm{k}[2 \mathrm{~g} \mathrm{~h}(\mathrm{t})]^{1 / 2}$; where $\mathrm{h}(\mathrm{t})$ is the height of fluid in the tank.

Find the time required to empty the tank.

6- Find the lateral displacement of a hinged-hinged column (or hinged-hinged beam) of length (L) subjected to an axial load (P) and a uniform lateral distributed load (W).

7- Find the Buckling of a hinged-hinged column

8- Find the lateral displacement of a hinged-hinged column (or hinged-hinged beam) of length (L) subjected to an axial load (P) and a uniform lateral distributed load (W).

9- Solve; $L\left(5 e^{-3 t} \sinh \quad 2 t\right)$
10- \quad So $L\left[2 e^{3 t}(4 \cos 2 t-5 \sin 2 t)\right]$
11- \quad Sc $L\left[3 e^{-2 t}(\sinh \quad 2 t-2 \cosh 2 t)\right]$

12- Use the Laplace transform of the Second derivative to derive:

$$
L(\sin a t)=\frac{a}{s^{2}+a^{2}}
$$

13- Use the Laplace transform of the Second derivative to derive:

$$
L(\sinh \quad a t)=\frac{a}{s^{2}-a^{2}}
$$

14- Use the Laplace transform of the Second derivative to derive:

$$
L(\cosh \quad a t)=\frac{s}{s^{2}-a^{2}}
$$

15- Use the Laplace transform of the Second derivative to determine the Laplace of:

$$
L\{t \cdot \cos \omega t\}
$$

16- Solve; $\quad \mathcal{L}^{-1}\left\{\frac{4 s-3}{s^{2}-4 s-5}\right\}$

17-Solve; $L^{-1}\left\{\frac{2(s+1)}{s^{2}+2 s+10}\right\}$

18-Solve; $L^{-1}\left\{\frac{7 s+13}{s\left(s^{2}+4 s+13\right)}\right\}$

19- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{(s+3)}{s(s-1)(s+2)}
$$

20- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{(s-1)}{s^{2}+2 s-8}
$$

21- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{3 s+7}{s^{2}-2 s+5}
$$

22- Determine the following inverse Laplace transforms

$$
\mathcal{L}^{-1} \frac{e^{-7 s}}{(s+3)^{3}}
$$

23- Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+13 y=0, \text { given that when } x=0, y=3 \text { and } \frac{d y}{d x}=7
$$

24- Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+10 y=e^{2 x}+20, \text { given that when } x=0, y=0 \quad \text { and } \quad \frac{d y}{d x}=-\frac{1}{3} .
$$

25- Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+16 y=10 \cos 4 x \quad \text {, given that when } \quad y(0)=3 \quad \text { and } \quad y^{\prime}(0)=4
$$

26- Use the convolution of the Laplace transforms to solve the differential equation:

$$
\frac{d y}{d x}-a y=e^{c t}, \text { at } \mathrm{y}(0)=0
$$

27- Find the inverse of the Laplace transform using Convolution theorem for function:

$$
H(s)=\frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

28- Use the convolution of the Laplace transforms to solve the differential equation:

$$
\begin{array}{rr}
y^{\prime \prime}+2 y^{\prime}+2 y=\sin \alpha t & y(0)=0 \\
y^{\prime}(0)=0
\end{array}
$$

29- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{1}{s^{2}(s-1)}\right\}
$$

30- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{s}{\left(s^{2}+4\right)^{2}}\right\}
$$

31- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{1}{s\left(s^{2}+4\right)^{1}}\right\}
$$

32- Apply convolution theorem to evaluate:

$$
L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}
$$

33-

