Trigonometric Function

Consider the circle (see Figure 2.1)

$$
x^{2}+y^{2}=r^{2}, r>0
$$

We define

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \text { and } \quad \cos \theta=\frac{x}{r} \\
& \Rightarrow y=r \sin \theta \quad \text { and } x=r \cos \theta
\end{aligned}
$$

Now, since $x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
& \Rightarrow r^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta=r^{2}, \quad r \neq 0 \\
& \Rightarrow \quad \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

Figure 2.1
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{y}{x}$ and $\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{x}{y}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{r}{x}$ and $\csc \theta=\frac{1}{\sin \theta}=\frac{r}{y}$

$$
\begin{array}{lc}
\sin (-\theta)=\frac{-y}{r}=-\frac{y}{r}=-\sin \theta \Rightarrow & \sin (-\theta)=-\sin \theta \\
\cos (-\theta)=\frac{x}{r}=\cos \theta \Rightarrow & \cos (-\theta)=\cos \theta
\end{array}
$$

Divide equation (1) by $\cos ^{2} \theta$ we get:

$$
\tan ^{2} \theta+1=\sec ^{2} \theta
$$

Divide equation (1) by $\sin ^{2} \theta$ we get:

$$
1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Figure 2.2

Figure 2.3

Since the circumference of the circle is 2π and one complete revolution of a circle is 360°, the relation between radians and degrees is given by

$$
\pi \text { radians }=180^{\circ}
$$

For example, 45° in radian measure is

$$
45 \cdot \frac{\pi}{180}=\frac{\pi}{4} \mathrm{rad}
$$

and $\pi / 6$ radians is

$$
\frac{\pi}{6} \cdot \frac{180}{\pi}=30^{\circ}
$$

Conversion Formulas

$$
1 \text { degree }=\frac{\pi}{180}(\approx 0.02) \text { radians }
$$

Degrees to radians: multiply by $\frac{\pi}{180}$
1 radian $=\frac{180}{\pi}(\approx 57)$ degrees
Radians to degrees: multiply by $\frac{180}{\pi}$

Figure 2.4 The angles of two common triangles, in degrees and radians.

Even	Odd
$\cos (-x)=\cos x$	$\sin (-x)=-\sin x$
$\sec (-x)=\sec x$	$\tan (-x)=-\tan x$
	$\csc (-x)=-\csc x$
	$\cot (-x)=-\cot x$

Periods of Trigonometric Functions

Period π :

$$
\begin{aligned}
& \tan (x+\pi)=\tan x \\
& \cot (x+\pi)=\cot x \\
& \sin (x+2 \pi)=\sin x \\
& \cos (x+2 \pi)=\cos x \\
& \sec (x+2 \pi)=\sec x \\
& \csc (x+2 \pi)=\csc x
\end{aligned}
$$

Period 2 π : $\quad \sin (x+2 \pi)=\sin x$

Some Important Identities

1. $\sin (\alpha \mp \beta)=\sin \alpha \cos \beta \mp \sin \beta \cos \alpha$
2. $\cos (\alpha \mp \beta)=\cos \alpha \cos \beta \pm \sin \alpha \sin \beta$
3. $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
4. $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$
5. $\cos ^{2} \frac{\alpha}{2}=\frac{1+\cos \alpha}{2}$
6. $\sin ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{2}$
7. $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha-\beta)+\sin (\alpha+\beta)]$
8. $\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$
9. $\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$
10. $\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$
11. $\sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}$
12. $\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}$
13. $\cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}$
14. $\sin 2 \alpha=2 \sin \alpha \cos \beta$
15. $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$
16. $\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}$

1. Sine Function

It is a function $f: \mathbb{R} \rightarrow[-1,1]$ defined by $f(x)=\sin x$.
$\sin x=0$ iff $x=0, \mp \pi, \mp 2 \pi, \mp 3 \pi, \ldots=n \pi, n \in \mathbb{Z}$.
$\sin x=\mp 1$ iff $x=\mp \frac{\pi}{2}, \mp \frac{3 \pi}{2}, \ldots=\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}$.
Since $\sin (-x)=-\sin x$, therefore the sine is an

Figure 2.5 odd function.

It's a one to one function if $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. So $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$ is a bijection function.

2. Cosine Function

It is a function $f: \mathbb{R} \rightarrow[-1,1]$ defined by $f(x)=\cos x$.
$\cos x=0$ iff $x=\mp \frac{\pi}{2}, \mp \frac{3 \pi}{2}, \ldots=\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}$.
$\cos x=\mp 1$ iff $x=0, \mp \pi, \mp 2 \pi, \mp 3 \pi, \ldots=n \pi, n \in \mathbb{Z}$
Since $\cos (-x)=\cos x$, therefore the cosine is an even function.

Domain: $-\infty<x<\infty$ Range: $-1 \leq y \leq 1$ Period: 2π

Figure 2.6
It's a one to one function if $0 \leq x \leq \pi$ or $-\pi \leq \mathrm{x} \leq 0$. Therefore $\cos :[0, \pi] \rightarrow[-1,1]$ is a bijection function.

3. Tangent Function

It is defined by $\tan : D_{\tan } \rightarrow \mathbb{R}$,

$$
\begin{aligned}
f(x) & =\tan x=\frac{\sin x}{\cos x}, \cos x \neq 0 \\
\cos x & =0 \text { if } x=\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z} \\
D_{\tan } & =\mathbb{R} /\left\{x: x=\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}\right\} \\
& =\left\{x \in \mathbb{R}: x \neq\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}\right\} .
\end{aligned}
$$

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $-\infty<y<\infty$
Period: π
Figure 2.7
$\tan x=0$ if $\sin x=0 \Rightarrow x=n \pi, n \in \mathbb{Z}$.
$f(x)=\tan x$ is not one to one function. It becomes one to one if $-\frac{\pi}{2}<x<\frac{\pi}{2}$.

4. Cotangent Function

It is defined by cot: $D_{\text {cot }} \rightarrow \mathbb{R}$,
$f(x)=\cot x=\frac{\cos x}{\sin x}, \sin x \neq 0$.
$\sin x=0$ if $x=n \pi, n \in \mathbb{Z}$,
$\Rightarrow D_{\text {cot }}=\{x \in \mathbb{R}: x \neq n \pi, n \in \mathbb{Z}\}$.

Figure 2.8
$f(x)=\cot x$ is not one to one function. It becomes one to one if $0<x<\pi$.

5. Secant Function

It is a function $f: D_{\text {sec }} \rightarrow(-\infty,-1] \cup[1, \infty)$, and defined by $f(x)=\sec x=\frac{1}{\cos x}, \cos x \neq 0$.
$\cos x=0$ if $x=\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}$,
$\Rightarrow D_{\text {sec }}=\left\{x \in \mathbb{R}: x \neq\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}\right\}$.
$f(x)=\sec x$ is not one to one function. It becomes one to one if $x \in\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$.

6. Cosecant Function

It is a function $f: D_{\text {csc }} \rightarrow(-\infty,-1] \cup[1, \infty)$,
and defined by $f(x)=\csc x=\frac{1}{\sin x}, \sin x \neq 0$.
$\sin x=0$ if $x=n \pi, n \in \mathbb{Z}$,
$\Rightarrow D_{\mathrm{csc}}=\{x \in \mathbb{R}: x \neq n \pi, n \in \mathbb{Z}\}$.
$f(x)=\sec x$ is not one to one function.
It becomes one to one if $x \in\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$.

The Inverse of Trigonometric Functions

1. The inverse of sine function

It's denoted by $\sin ^{-1}$, and defined to be the inverse of the sine function for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

$$
f(x)=\sin ^{-1} x, \sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

2. The inverse of cosine function

It's denoted by $\cos ^{-1}$, and defined to be the inverse of the cosine function for $0 \leq x \leq \pi$,

$$
f(x)=\cos ^{-1} x, \cos ^{-1}:[-1,1] \rightarrow[0, \pi]
$$

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$.
Range:
Period: 2π
Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

3. The inverse of tangent function

It's denoted by $\tan ^{-1}$, and defined to be the inverse of the tangent function

$$
f(x)=\tan ^{-1} x, \tan ^{-1}: \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

Figure 2.13

4. The inverse of cotangent function

It's denoted by $\cot ^{-1}$, and defined to be the inverse of the cotangent function
$f(x)=\cot ^{-1} x, \cot ^{-1}: \mathbb{R} \rightarrow(0, \pi)$

Figure 2.14

5. The inverse of secant function

It's denoted by sec ${ }^{-1}$, and defined to be the inverse of the secant function

$$
f(x)=\sec ^{-1} x, \sec ^{-1}:(-\infty,-1] \cup[1, \infty) \rightarrow\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]
$$

Figure 2.15

6. The inverse of cosecant function

It's denoted by csc $^{-1}$, and defined to be the inverse of the cosine function
$f(x)=\csc ^{-1} x, \csc ^{-1}:(-\infty,-1] \cup[1, \infty) \rightarrow\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$
$y=\csc ^{-1} x$
Domain: $|x| \rightleftharpoons 1$
Range: $\quad[-\pi / 2,0) \cup(0, \pi / 2]$

Logarithmic Functions

1. The General Logarithmic Functions

Let $a>0, a \neq 1$ be any real number, the general logarithmic from $\log _{a}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ where a is the base of logarithmic function.

Some Properteis

If x and y are positive numbers, then

Figure 3.33

1. $\log _{a}(x y)=\log _{a} x+\log _{a} y$
2. $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
3. $\log _{a} x^{r}=r \log _{a} x$ (where r is any real number)
4. $\log _{a} 1=0$
5. $\log _{a} a=1$
6. For $0<x<1, \log _{a} x<0$
7. For $x \geq 1, \log _{a} x \geq 0$
8. $\lim _{x \rightarrow 0^{+}} \log _{a} x=-\infty, \lim _{x \rightarrow \infty} \log _{a} x=\infty$
9. It is one to one and onto function, so it is bijective function. -If $a=10$, then we denote this function by $f(x)=\log x$. -If $a=e$ (e is the Euler's number and $e=2.718281828$...), we denote this function by $f(x)=\ln x$ and it is called the natural logarithmic function.

2. The Natural Logarithmic Functions

It is the logarithmic function with the base $a=e$.
i.e. $f(x)=\log _{a} x=\ln x, \ln : \mathbb{R}^{+} \rightarrow \mathbb{R}$.

\boldsymbol{x}	$\ln x$
0	undefined
0.05	-3.00
0.5	-0.69
1	0
2	0.69
3	1.10
4	1.39
10	

3. $\ln 1=0, \ln e=1$
4. $\ln x^{r}=r \ln x$
5. $\ln \frac{1}{a}=\ln a^{-1}=-\ln \mathrm{a}$
6. For $0<x<1, \ln x<0$
7. For $x \geq 1, \ln x \geq 0$
8. $\lim _{x \rightarrow \mathbf{0}^{+}} \ln x=-\infty, \lim _{x \rightarrow \infty} \ln x=\infty$
9. It is one to one and onto function, so it is bijective function.

Exponential Functions

1. The Natural Exponential Functions

Since the natural logarithmic function is a bijective function, so it has an inverse, which's the natural exponential, hence exp: $\mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $f(x)=e^{x}, \forall x \in \mathbb{R}$.

Some Properteis

The natural exponential e^{x} obeys the following laws:

1. $e^{x} e^{y}=e^{x+y} \forall x, y \in \mathbb{R}$
2. $e^{-x}=\frac{1}{e^{x}}$
3. $\frac{e^{x}}{e^{y}}=e^{x-y}$
4. $\left(e^{x}\right)^{y}=e^{x y}=\left(e^{y}\right)^{x}$
5. $e^{0}=1$

Typical values of e^{x}

\boldsymbol{x}	e^{x} (rounded)
-1	0.37
0	1
1	2.72
2	7.39
10	22026
100	2.6881×10^{43}

6. $e^{\ln x}=x$
7. $\ln e^{x}=x$

Figure 3.35 (a) $y=e$

Figure 3.36
(b) $y=e^{-x}$

2. The General Exponential Functions

It is defined $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$by

$$
f(x)=a^{x}, \forall x \in \mathbb{R}, a>0, a \neq 1
$$

It is the inverse function of the logarithmic function.
Since $e^{\ln x}=x \Rightarrow e^{\ln a}=a$

$$
\begin{aligned}
& \Rightarrow\left(e^{\ln a}\right)^{x}=a^{x} \\
& \Rightarrow a^{x}=e^{x \ln a}
\end{aligned}
$$

$\log _{a} x=\frac{1}{\ln a} \cdot \ln x=\frac{\ln x}{\ln a}$

Figure 3.38

