Trigonometric Function

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x} \text{ and } \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{x}{y}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{r}{x} \text{ and } \csc \theta = \frac{1}{\sin \theta} = \frac{r}{y}$$

$$\sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin \theta \implies \qquad \sin(-\theta) = -\sin \theta$$

$$\cos(-\theta) = \frac{x}{r} = \cos \theta \implies \qquad \cos(-\theta) = \cos \theta$$

Divide equation (1) by $\cos^2\theta$ we get:

$$\tan^2\theta + 1 = \sec^2\theta$$

Divide equation (1) by $\sin^2\theta$ we get:

$$1 + \cot^2 \theta = \csc^2 \theta$$

Since the circumference of the circle is 2π and one complete revolution of a circle is 360°, the relation between radians and degrees is given by

 π radians = 180°. Degrees Radians For example, 45° in radian measure is $45 \cdot \frac{\pi}{180} = \frac{\pi}{4} \operatorname{rad},$ 1 $\frac{\pi}{2}$ 90 and $\pi/6$ radians is $\frac{\pi}{6} \cdot \frac{180}{\pi} = 30^{\circ}.$ **Conversion Formulas** 1 degree = $\frac{\pi}{180}$ (≈ 0.02) radians $\sqrt{3}$ $\sqrt{3}$ Degrees to radians: multiply by $\frac{\pi}{180}$ 1 radian = $\frac{180}{\pi}$ (\approx 57) degrees 60 90 1 Radians to degrees: multiply by $\frac{180}{\pi}$

Figure 2.4 The angles of two common triangles, in degrees and radians.

Even	Odd
$\cos(-x) = \cos x$	$\sin(-x) = -\sin x$
$\sec(-x) = \sec x$	$\tan(-x) = -\tan x$
	$\csc(-x) = -\csc x$
	$\cot(-x) = -\cot x$

Periods of	Trigonometric
Functions	
Period <i>m</i> :	$\tan(x+\pi)=\tan x$
	$\cot(x + \pi) = \cot x$
Period 2π :	$\sin(x+2\pi)=\sin x$
	$\cos(x+2\pi)=\cos x$
	$\sec(x+2\pi)=\sec x$
	$\csc(x+2\pi)=\csc x$

24

Calculus First class

Some Important Identities

1. $\sin(\alpha \mp \beta) = \sin \alpha \cos \beta \mp \sin \beta \cos \alpha$ **2.** $cos(\alpha \mp \beta) = cos \alpha cos \beta \pm sin \alpha sin \beta$ 3. $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ 4. $\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ 5. $\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$ 6. $\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$ 7. $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)]$ 8. $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$ 9. $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$ **10.** $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$ **11.** $\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$ **12.** $\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$ **13.** $\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$ **14.** $\sin 2\alpha = 2 \sin \alpha \, \cos \beta$ **15.** $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ **16.** $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$

1. Sine Function

It is a function $f: \mathbb{R} \to [-1, 1]$ defined by $f(x) = \sin x$. $\sin x = 0$ iff $x = 0, \mp \pi, \mp 2\pi, \mp 3\pi, ... = n\pi, n \in \mathbb{Z}$. $\sin x = \mp 1$ iff $x = \mp \frac{\pi}{2}, \mp \frac{3\pi}{2}, ... = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}$. Since $\sin(-x) = -\sin x$, therefore the sine is an odd function.

It's a one to one function if $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. So $\sin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ is a bijection function.

2. Cosine Function

It is a function $f: \mathbb{R} \to [-1, 1]$ defined by $f(x) = \cos x$.

 $\cos x = 0 \text{ iff } x = \mp \frac{\pi}{2}, \mp \frac{3\pi}{2}, \dots = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}.$ $\cos x = \mp 1 \text{ iff } x = 0, \mp \pi, \mp 2\pi, \mp 3\pi, \dots = n\pi, n \in \mathbb{Z}$ Since $\cos(-x) = \cos x$, therefore the cosine is an even function.

It's a one to one function if $0 \le x \le \pi$ or $-\pi \le x \le 0$. Therefore $\cos: [0, \pi] \to [-1, 1]$ is a bijection function.

3. Tangent Function

It is defined by
$$\tan: D_{\tan} \to \mathbb{R}$$
,
 $f(x) = \tan x = \frac{\sin x}{\cos x}, \cos x \neq 0.$
 $\cos x = 0$ if $x = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}$,
 $D_{\tan} = \mathbb{R}/\{x: x = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}\}$
 $= \{x \in \mathbb{R}: x \neq \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}\}.$
 $\tan x = 0$ if $\sin x = 0 \implies x = n\pi, n \in \mathbb{Z}$.

 $f(x) = \tan x$ is not one to one function. It becomes one to one if $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

4. Cotangent Function

It is defined by
$$\cot: D_{\cot} \to \mathbb{R}$$
,
 $f(x) = \cot x = \frac{\cos x}{\sin x}, \sin x \neq 0.$
 $\sin x = 0$ if $x = n\pi, n \in \mathbb{Z}$,
 $\Rightarrow D_{\cot} = \{x \in \mathbb{R} : x \neq n\pi, n \in \mathbb{Z}\}.$
 $\cot x = 0$ if $\cos x = 0 \Rightarrow x = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}.$

 $f(x) = \cot x$ is not one to one function. It becomes one to one if $0 < x < \pi$.

5. Secant Function

It is a function $f: D_{sec} \to (-\infty, -1] \cup [1, \infty)$, and defined by $f(x) = \sec x = \frac{1}{\cos x}$, $\cos x \neq 0$. $\cos x = 0$ if $x = \left(n + \frac{1}{2}\right)\pi$, $n \in \mathbb{Z}$, $\Rightarrow D_{sec} = \{x \in \mathbb{R} : x \neq \left(n + \frac{1}{2}\right)\pi$, $n \in \mathbb{Z}\}$. $f(x) = \sec x$ is not one to one function. It becomes one to one if $x \in [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$.

6. Cosecant Function

It is a function $f: D_{csc} \to (-\infty, -1] \cup [1, \infty)$, and defined by $f(x) = \csc x = \frac{1}{\sin x}$, $\sin x \neq 0$. $\sin x = 0$ if $x = n\pi$, $n \in \mathbb{Z}$, $\Rightarrow D_{csc} = \{x \in \mathbb{R} : x \neq n\pi$, $n \in \mathbb{Z}\}$. $f(x) = \sec x$ is not one to one function. It becomes one to one if $x \in [-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]$.

The Inverse of Trigonometric Functions

1. The inverse of sine function

It's denoted by \sin^{-1} , and defined to be the inverse of the sine function for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

 $f(x) = \sin^{-1} x, \sin^{-1}: [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$

2. The inverse of cosine function

It's denoted by \cos^{-1} , and defined to be the inverse of the cosine function for $0 \le x \le \pi$, $f(x) = \cos^{-1} x, \cos^{-1} \colon [-1, 1] \to [0, \pi]$

Figure 2.10

Figure 2.11

3. The inverse of tangent function

It's denoted by \tan^{-1} , and defined to be the inverse of the tangent function

$$f(x) = \tan^{-1} x, \ \tan^{-1}: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$$

4. The inverse of cotangent function

It's denoted by \cot^{-1} , and defined to be the inverse of the cotangent function

$$f(x) = \cot^{-1} x$$
, $\cot^{-1} : \mathbb{R} \to (0, \pi)$

Figure 2.13

5. The inverse of secant function W_{2} does not a low sec-1 and defined

It's denoted by \sec^{-1} , and defined to be the inverse of the secant function

$$f(x) = \sec^{-1} x, \sec^{-1}: (-\infty, -1] \cup [1, \infty) \to [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$$

Figure 2.15

6. The inverse of cosecant function

It's denoted by \csc^{-1} , and defined to be the inverse of the cosine function

 $f(x) = \csc^{-1} x, \csc^{-1}: (-\infty, -1] \cup [1, \infty) \to [-\frac{\pi}{2}, 0] \cup (0, \frac{\pi}{2}]$

Logarithmic Functions

1. The General Logarithmic Functions

Let a > 0, $a \neq 1$ be any real number, the general logarithmic from $\text{Log}_a : \mathbb{R}^+ \to \mathbb{R}$ where a is the base of logarithmic function.

Some Properteis

If x and y are positive numbers, then

1.
$$\log_a(xy) = \log_a x + \log_a y$$

2.
$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$$

- **3.** $\log_a x^r = r \log_a x$ (where *r* is any real number)
- **4.** $Log_a 1 = 0$
- **5.** $Log_a a = 1$
- **6.** For 0 < x < 1, $\log_a x < 0$
- **7.** For $x \ge 1$, $\log_a x \ge 0$

8. $\lim_{x\to 0^+} \operatorname{Log}_a x = -\infty$, $\lim_{x\to\infty} \operatorname{Log}_a x = \infty$

9. It is one to one and onto function, so it is bijective function.

-If a = 10, then we denote this function by f(x) = Log x. -If a = e (e is the Euler's number and e = 2.718281828 ...), we denote this function by $f(x) = \ln x$ and it is called the natural logarithmic function.

2. The Natural Logarithmic Functions

It is the logarithmic function with the base a = e. *i.e.* $f(x) = Log_a x = ln x$, $ln: \mathbb{R}^+ \to \mathbb{R}$.

Some Properteis

If x and y are positive numbers, then

 $\mathbf{1.}\ln(xy) = \ln x + \ln y$

$$\mathbf{2}.\frac{\ln x}{\ln y} = \ln x - \ln y$$

x	ln x
0	undefined
0.05	-3.00
0.5	-0.69
1	0
2	0.69
3	1.10
4	1.39
10	2.20

3. $\ln 1 = 0$, $\ln e = 1$ **4.** $\ln x^r = r \ln x$ **5.** $\ln \frac{1}{a} = \ln a^{-1} = -\ln a$ **6.** For 0 < x < 1, $\ln x < 0$ **7.** For $x \ge 1$, $\ln x \ge 0$ **8.** $\lim_{x\to 0^+} \ln x = -\infty$, $\lim_{x\to\infty} \ln x = \infty$ **9.** It is one to one and onto function, so it is bijective function.

Exponential Functions

1. The Natural Exponential Functions

Since the natural logarithmic function is a bijective function, so it has an inverse, which's the natural exponential, hence exp: $\mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = e^x, \forall x \in \mathbb{R}$.

Some Properteis

The natural exponential e^x obeys the following laws:

1.
$$e^{x} e^{y} = e^{x+y} \forall x, y \in \mathbb{R}$$

2. $e^{-x} = \frac{1}{e^{x}}$
3. $\frac{e^{x}}{e^{y}} = e^{x-y}$
4. $(e^{x})^{y} = e^{xy} = (e^{y})^{x}$
5. $e^{0} = 1$

6. $e^{\ln x} = x$

x	e ^x (rounded)
-1	0.37
0	1
1	2.72
2	7.39
10	22026
100	2.6881×10^{4}

2. The General Exponential Functions

It is defined $f : \mathbb{R} \to \mathbb{R}^+$ by

$$f(x) = a^x, \forall x \in \mathbb{R}, a > 0, a \neq 1$$

It is the inverse function of the logarithmic function.

Since $e^{\ln x} = x \implies e^{\ln a} = a$

$$\Rightarrow (e^{\ln a})^x = a^x$$
$$\Rightarrow a^x = e^{x \ln a}$$

$$\log_a x = \frac{1}{\ln a} \cdot \ln x = \frac{\ln x}{\ln a}$$

Inverse Equations for a^x and $\log_a x$ $a^{\log_a x} = x$ (x > 0) $\log_a(a^x) = x$ (all x)

