CALCULUS

Ms:Sebar Hage Jumha

Question Bank

1. Prove that for all real numbers x and y

$$|x + y|^{2} + |x - y|^{2} = 2|x|^{2} + 2|y|^{2}$$

2. Prove that for real numbers *x* and *y*

|x + y| = |x| + |y| if and only if $xy \ge 0$.

3. Prove that for real numbers x and y

|x + y| < |x| + |y| if and only if xy < 0.

- 4. Which of the following statements are true?
 - a) $\{x: |3 x| < 4\} = \{x: -1 < x < 7\}$
 - b) {x: |4 x| < 1} = {x: 3 < x < 5}
 - c) $\{x: |1-x| < 2\} = \{x: 1 < x < 3\}$
- 5. Find the domains and ranges of the function $y = f(x) = \sec(x)$.
- 6. Find the domains and ranges of the function $y = f(x) = \ln(x)$.
- 7. Find the domains and ranges of the function

$$y = f(x) = \begin{cases} x & if \quad x \le 3\\ 3 & if \quad x > 3 \end{cases}$$

8. Let
$$f: R \to R$$
 and $f(x) = x^3 + 3$. Find $f^{-1}(x)$ if possible?

9. For each of the following functions find its domain.

$$y = \sin(\frac{1}{x}), y = \ln(x+3) \text{ and } y = \ln(\cos(x)).$$

10. Let $f: \mathbb{R}^{x} \to \mathbb{R}$ and $f(x) = x^{3} + 3$. Find $f^{-1}(x)$ if possible?

11. Which of the following functions is even, odd or neither?

1) $f(x) = x^4 + 3x^2 - 1$ 2) f(x) = x + sinx 3) $f(x) = x^2 + 2x$.

12. Determine the range of the given function $f(x) = \frac{|x|}{x}$.

- 13. Determine the range of the given function $f(x) = sin^2(x)$.
- 14.Determine the range of the given function $f(x) = e^x$.
- 15. Find the solution of the following inequality $x^2 3x + 2 > 0$.
- 16. Find the solution of the following inequality $0 \le |x 4| \le 4$.

17. Find the solution of the following inequality $\frac{1}{2}$

$$\frac{-x}{3} \ge 2x - 1.$$

- 18. Find the domain of the following function $f(x) = e^x$.
- 19. Find the domain of the following function $f(x) = \csc(x)$.
- 20. Find the domain of the following function $f(x) = \begin{cases} 1 x^2 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$.
- 21. Determine the range of the given function $f(x) = \frac{|x|}{x}$.
- 22. Determine the range of the given function $f(x) = \ln(x)$.
- 23. Determine the range of the given function $f(x) = cos^2(x)$.

24. Which of the following functions is even, odd or neither?

1) $f(x) = x + \cos x$ 2) $f(x) = x^4 + 3x^2 - 1$ 3) (x) = -x|x|. 25. Find the solution of the following inequality $x^2 - 3x - 4 < 0$. 26. Find the solution of the following inequality $0 \le |x - 2| \le 4$.

27. Let $f: R \to R$ and $f(x) = x^3 + 6$. Find $f^{-1}(x)$ if possible?

28. Evaluate the following limit: $\lim_{x \to \infty} \frac{\ln(2+e^{3x})}{\ln(1+e^{x})}$ 29. Evaluate the following limit: $\lim_{x \to \infty} \frac{x^2 - 3x + 7}{x^3 + 10x - 4}$ 30. Evaluate the following limit: $\lim_{x \to 0} \frac{4x}{\tan 3x + \sin 2x}$ 31. Evaluate the following limit: $\lim_{x \to 0} x^2 \cos(\frac{1}{x})$ 32. Evaluate the following limit if exist: $\lim_{x \to 0} \frac{\sqrt{16x^2 + 5}}{2x - 3}$ 33. Evaluate the following limit if exist: $\lim_{x \to -\infty} \frac{3x^2 + 4x + 3}{x^3 + x + 14}$

34. Evaluate the following limit if exist:
$$\lim_{x\to\infty} \frac{2x^2-3x+5}{x-4}$$
.

35. Evaluate the following limit if exist:

$$\lim_{x \to \infty} \frac{10x^3 - 3x^2 + 10}{\sqrt{25x^6 + x^4 + 2}}.$$

36. Find the following limits by using squeezing theorem:

1)
$$\lim_{x \to \infty} \frac{\cos(x)}{x}.$$

2)
$$\lim_{x \to -\infty} \frac{\sin(x)}{x}.$$

3)
$$\lim_{x \to -\infty} \frac{\cos(x)}{x}, \lim_{x \to -\infty} \frac{(\cos(x))^2}{x}.$$

4)
$$\lim_{x \to 0^-} x^3 \cos(\frac{2}{x}).$$

5)
$$\lim_{x \to -\infty} \frac{2 - \cos(x)}{x + 3}.$$

37. Find the following limits:

1)
$$\lim_{x \to \infty} \left(\frac{x + \cos(x)}{x}\right)^{x \sec(x)}.$$

2)
$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2}.$$

3)
$$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta + \tan(\theta)}.$$

4)
$$\lim_{\theta \to 0} \frac{\cos(\theta) - 1}{\sin(\theta)}.$$

5)
$$\lim_{x \to 0} \frac{\sin(x^2)}{x}.$$

38. Find the points of discontinuity of the function $f(x) = \begin{cases} 0 & \text{if } x < -2 \\ -x & \text{if } -2 \le x < 0 \\ x^2 - 1 & \text{if } x \ge 0 \end{cases}$

39. Find the points of discontinuity of the function $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & x \neq 3 \\ 4 & x = 3 \end{cases}$.

40. Find the value of the constant k so that the function f defined below is continuous at x = 0

$$f(x) = \begin{cases} \frac{1 - \cos(4x)}{8x^2} & x \neq 0\\ k & x = 0 \end{cases}$$

41. Prove that $cosh^2x - sinh^2x = 1$.

42. Find the following limits:

1-
$$\lim_{x\to\infty} \frac{\ln(\ln x)}{x}$$
. 2- $\lim_{x\to\frac{\pi}{4}} [(1-\tan x)\sec 2x]$.

- 3- $\lim_{x\to 0} (1 + \sin 2x)^{\frac{1}{x}}$
- 43. Find the following limits:

1-
$$\lim_{x \to 1} \frac{\ln x}{x-1}$$
. 2- $\lim_{x \to \infty} x e^{-x}$.