CHAPTER THREE
Differentiation of Functions

In this chapter, we discuss the notions of sequences and convergence of
sequences to give the definition of derivative in a space R with usual metric
space.

Definition 3.1: Let I be an open interval in R and f:I - R be a real valued
function. Let{x, },en be a sequence in [ such that x,, = x, for some x, € I and

X, # Xo.Then we say that f is differentiable at x or it has a derivative at x, if
f (xn)—f(xo)

and only if the sequence {——
n—4o

}nen 1S convergent to the same value A in

af

R, for each sequence {x, },cyn in I where x,, = x, and is denoted by "
X =Xg

or
f'(xy), so usually we can write

A= ) = tim TR =G0

X=X Xn — Xo

Definition 3.2: Let f:1 - R be a real valued function define on an open
intervall.Then we say that f is differentiable on I, if f is differentiable at each
x €1l

Example 3.3: By using the definition of differentiation if f(x) = x?, then show
that £ =2x vx e Dy.
dx

Solution: Let {x,} be any sequence in Dy such that x,, > x asn — o. Then the

sequence
f(xn)—f(x) (xn)?2—x?
LTy = {2 = 4+ 4

Xn—X Xn—X



Since x,, » x as n — oo, therefore {x,, + x} - 2x as n — oo,
Then f'(x) = 2x.

Theorem 3.4: If f is differentiable at x,, then f is continuous at x,.

fx n) f(xo)

Proof: Let f be a differentiable at x,. Then the sequence { Ynen IS

convergent to the same value A in Ry, for each sequence {xn}neN in Df where
Xn, = X, by using some properties of sequence we get that the multiplication of

both {M}neN and {x,, — xy}nen IS also convergent sequence.

Then W (x, — x0) = f(x,) — f(xp), is converges.
n—+4o

Which mean that the function f (x,,) is converges to f (x,), by theorem 1.6 we
get that f is continuous at x,.

Remark 3.5: The converse of theorem 3.4 is not true in general.

For Example:

Let f: R = R defined by f(x) = |x|, discuss continuity and differentiability of
the function f atx = 0.

Solution:

Since f(x) = |x|, is continuous for all x € R, then f(x) = |x| is continuous at

x = 0 but is not differentiable at x = 0, here we have to show that there exists

at least two sequence {x,}nen and {Vy}nen, where x, = 0 and also y, — 0.

While {f (xn)— f (9 f (J/n) f )

Inen = A1and { tnen = A2 and A, # A,.

1
PUt{xn}neN = {;}nEN and {Yn}nEN = {_ ;}nEN-

.. 1 1
So itis clearthat; -0 and—; - 0 asn — oo.



S|r

Whlle f(xn)_f(o) — |

Xn—0

_ 1 and fO0TO@ _ |§| _

- 1#1=
Yn—0

:I4
SRR
:|,L|:|»—~

n

—f(x")_f(o), which mean that f is not differentiable at x = 0.

Xn—

Differentiation and Arithmetic Operation (H.W)
The following theorem should be familiar from calculus.
Theorem 3.6: If f and g are differentiable at x,thensoaref +g,f —
g,and fg,with
a) (f +9) (x0) = f'(x0) + 9" (x0) -
b) (f —9) (x0) = f'(x0) — g'(x0) -
c) (fg) = f'(x0)g(x0) + f(x0) g’ (x0).
d) The quotients f/g is differentiable at x, if g(x,) # 0, with

f ! T (x0)g(xo)—f(x0) g’ (x0)
(g) (%0) = (9Cxo))? '

Lemma 3.7: If f is differentiable at x, then
fx) =f(xo) + [f'(x0) + EG)](x — xo)

Where E is defined on a neighborhood of x, and
lim E(x) = E(x,) =0

X—Xo

Proof: Define

(x — xp)

f(x) — f(x0) —f'(x0), x € Dy and x # x,,
E(x) =

k 0 X = X
If x # x, then E(x) =f(2:—j;go)—f’(x0),

then f(x) = f(xo) + [f'(xo) + E(x)](x — x,) and (3) is obvious if x = x,.

Thenlim,_,, E(x) =0.Wedefine E(x,) = 0, to make E continuous at x.



Theorem 3.8: (The Chain Rule)
Suppose that g is differentiable at x, and f is differentiable at g(x,).then the
composite function h = fo g ,defined by h = f(g(x)). Is differentiable at x,
with h'(xo) = f'(g(x0))g’ (o)
Proof
since f differentiable at g(x,) by lemma 3.7 implies that
f©) = f(g(x)) = [f'(9(x0)) + E@®)](t — g (x0))

Where

lim E(t) = E(g(x0)) =0

X—=Xg

Letting t = g(x),

then f(g(x)) — f(9(x0)) = [f'(9(x0)) + E(g(x)](g(x) — g9 (%))
Since h(x) = f(g(x)), this implies that

h(X) - h(xo) _ [f’(g(xo)) + E(g(x))] g(X) - g(xo)

X—XO X—XO

since g is differentiable at x, then g is continuous at x, (by theorem 3.4) and
Theorem1 12. imply that

lim E(g(x)) = E(g(x)) = 0

Therefore lim 2O10) f’(g(xo))g’(xo).

x-xg X~Xo

Then h'(xy) = f,(g(xo)).g’(xo)-



Applications of Differentiation

Definition 3.9: A function f has an absolute maximum (or global maximum) at c
if f(c) = f(x) for all x in D, where D is the domain of f .the number f(c) is
called the maximum value of f on D. Similarly, f has an absolute minimum at c if
f(c) < f(x) for all x in D and the number f(c) is called the minimum value of f
on D. The maximum and minimum values of f are called the extreme values of f.

FIGURE 1
Minimum value fia),
maximum value f{d)

Definition 3.10: A function f has a local maximum (or relative maximum) at c if
f(c) = f(x) where x near c [this means that f(c) = f(x) for all x in some open
interval containing c] .the number f(c) is called the maximum value of f on D.
Similarly, f has a local minimum atc i f f(c) < f(x) when x near c.

The Extreme Value Theorem 3.11:
If f Is continuous on a closed interval [a,b] then f attains an absolute

maximum value f(c) and an absolute minimum value f(d) at some number
cand d in [a, b].



Fermat’s Theorem 3.12:
If f has a local maximum or minimum at c and if f'(c) exist,then f'(c) = 0.
Proof:
suppose that f has local maximum at c, then according to Definition f(c) = f(x)
if x is sufficiently close to c, and if h is sufficiently close to 0, with h being positive
or negative ,then

fe)=f(c+h)
And therefore

fc+h)—f(c)<0 IS |
We can divide both sides of an inequality by a positive number .thus, if h > 0
and h is sufficiently small, we have

fexn=1©

Taking the right-hand limit of both sides of this inequality, we get

+h) -
lim LT SO o0
h-o0*t h h-0%t

But since f’(c) exist, we have

(o) = LD I@ _ [ D=1

h-0* h

And so we have shown that f'(c) < 0.
If h < 0, then the direction of the inequality(1) is reversed when we divided by
h:

Fleth) =f©) _
h
So taking the left-hand limit ,we have

h<O0

f(c+h})l—f(6)= lim f(C+h)—f(C)20

fi(e) =i Al h

We have shown that f'(c) = 0 and also that f'(c¢) < 0.Then f'(c) =0.



Definition 3.12: A critical number of a function fis a number c in the domain of
f such that eitherf'(c) = 0 or f'(c) does not exist.

Mean Value Theorems

Rolle’s Theorem 3.13: Let f be a function that satisfies the following three
hypotheses :

1. fis continuouse on the closed interval [a,b].

2. fis differentiable on the open interval (a,b).

3. f(@) = f(b)
Then there exists c in (a,b) such that f'(c) = 0.

FA ¥4

(Figure 2)



Proof: There are three cases
Casel: If f(x) = k ,a constant. Then f'(x) =0,
so the number c can be taken to be any number in (a, b).

Casell: If f(x) > f(a) for some x in (a, b) [as in figure 2 (b) or (c)]

By the Extreme Value Theorem (which we can apply by hypothese 1), f has a
maximum value somewhere in [a,b]. since f(a) = f(b), it must attain this
maximum value at a number c in the open interval (a,b). Then f has a local
maximum at ¢ and, by hypethesis 2, f is differentiable on (a,b) and c in (a, b)
them fis differentiable at c .Therefore, f'(c) = 0 by fermat's Theorem.

Case III: If f(x) < f(a) for some x in (a,b) [as in figure 2(c) or (d)]. By the
Extreme Value Theorem, f has a mnimum value in [a,b] and since f(a) = f(b) it
attains this minimum value at a number c in (a,b). Then f has a local minimum
at ¢ and by hypethesis 2, f is differentiable on (a,b) and c in (a,b) them fis
differentiable at c .Therefore, f'(c) = 0 by fermat's Theorem.

Theorem 3.14:(Lagrange’s Mean Value Theorem Or First Mean Value Theorem)

Let f be contiuous on [a,b], and differentiable on (a,b). Then there exists
c in (a,b) such that

fb) = f(a)

a4 f'(c) orequivalently f(b)=f(a)+ (b —a)f (c).

a, f(a))

Figure 4.3: Graphical interpretation of the mean value theorem.



Proof
The theorem following easily from Rolle’s Theorem.
Define the function g:[a,b] = R
b—
g = f(x) = f(b) + (f(b) = f()) =
Then we know that g is a differentiable function on (a, b) and continuous on

[a, b] such that
g(a) = 0and g(b) = 0.Thus there exist ¢ € (a,b) such that g'(c) = 0.

-1
0=9'©) = f©+(f®) - (@) 5—
Then f (b) = f(a) = (b~ a)f ().

For a geometric interpretation of the mean value theorem see figure 3 .The idea
f)—f(a)

is the slop of the line between the point
(b) f(a)

is that the value

(a,f(a))and (b, f(b)). Then c is the point such that f'(c) = that is

the tangent line at the point (c, f(c)) has the same slope as the Ime between

(a,f(a))and (b, f (b)).

Example 3.15:
Verify Lagrange’s Mean Value Theorem for the function f(x) = x(x — 1)(x — 2)
. 1

in [0, 5]'
Solution

Since f is a polynomial then f is continuous in [0, %] and differentiable in (O,%).

f(0)

()— = f'(c).

2

Now ff)=x-1Dx-2)+x(x—1)+x(x—2)
then  f'(x) =3x*—6x+2, f(O)=OandfG) =

Thus there exists c in |0, ] such that

3
<
5

From(1), ==-(3c2—6c+2) then 12c?—24c+5=0

Then ¢ = (6 +—) nly 1 —Elles in (O, —)

Henceweget c¢=1-— g and the theorem is verified.



Some Useful Deduction From The Mean Value Theorem

Proposition 3.16:
Let I be an interval and let f:1 — R be a differentiable function such that
f'(x) =0 forall xinl.Then f is constant.

Proof

By contrapositive. Suppose that f is not constant, then there exist x and y in |
such that x <yand f(x) # f(y) then f restricted to [x,y]| satisfies the

hypotheses of the first mean value theorem .Therefore there is a c €
1oy — FO)—fx)
f'(e) =127

then f(y)—f(x)=f"(c)ly —x).
Since y # x and f(y) # f(x) then f'(c) # 0.

(x,y) such that

)

Proposition 3.17:
Let f:1 - R be a differential function and f is increasing if and only if
f'(x) =0forallx €l.

Proof:
Suppose that fis increasing and differential function then for all x and c in |
we have % >0

Then  lim 2~ f'(c)=0

xX—C xX—cC -
Hence f'(c)=0.
Conversely
Suppose that f'(x) = 0 forall x € 1. Let x > y in I. Then by the first mean value
theorem there is some c € (x,y) such that

fO)=f =1 ()x—y)

Since f'(¢c) =0 andx—y >0, then f(x) — f(y) = 0.
So f is increasing.



Proposition 3.18 (H.W)
Let f:1 = R be a differential function and f'is decreasing if and only if
f'(x) <0forallx € 1.

Theorem3.19:(Cauchy Mean Value Theorem OR Second Mean Value Theorem)
If fand g are continuous on the closed interval [a ,b] and differentiable on the
open interval (a, b) ,then

[9(B) — g(@]f'(c) = [f(b) — f(a@)]g'(c)

for some c in (a, b).

Proof The function
h(x) = [g(b) —g@]f(x) = [f(b) — f(a)]g(x)

Is continuous on [a, b] and dif ferentiable on (a, b),

and h(a) = h(b) = g(b)f(a) — f(b)g(a).

Therefore, Rolle’s Theorem implies that h'(c) = 0 for some c in (a, b).
since h'(c) = [g(b) — g(@)]f'(c) — [f(B) — f(a)lg'(c)

then 0 =[g(b) — g(@]f'(c) = [f(b) — f(a)]lg'(c)

therefore, [g(b) — g(a@)]f'(c) = [f(b) — f(a)]g'(c).

Example 3.20:

Verify the Cauchy’s mean value theorem for the functions x* and x3 in [1,2]
and also find c of this theorem.

Solution

Let f(x) = x% and g(x) = x3. Since f (x) and g(x) are both polynomial
functions, so they are continuous on [1,2] and differentiable on (1,2).

Also g'(x) = 3x? # 0 for any point in (1,2).

Hence by Cauchy’s mean value theorem there exists at least one number c in
(1,2) such that [g(2) — g(DIf"'(c) = [f(2) — fF(D]g'(c)

Then (8 — 1)2¢ = (4 — 1)3c?, there fore c = 1’74 liesin (1,2).

Hence Cauchy’s mean value theorem is verified.



The Intermediate Value Theorem 3.21: (W.H)

Suppose that f is continuouse on the closed interval [a,b] and let N be any
number between f(a) and f(b) where f(a) # f(b). Then there exist a number
cin (a,b) such that f(c) = N.

Example 3.22:
Prove that the equation x3 + x — 1 = 0 has exactly one real root.

Solution First we use the Intermediate Value Theorem to show that a root exist.
Let f(x) = x3+x—1.Thenf(0) =—-1<0and f(1) =1 > 0.
Since f is polynomial ,it is continuous, so the Intermediate Value Theorem state
that there is a number c between 0 and 1 such that f(c) = 0.Thus, the given
equation has a root.
To show that the equation has no another real root, we use Rolle’s Theorem and
by contraduction suppose that it had two roots a and b .Then f(a) = 0 = f(b)
and since f is polynomia, it is differentiable on (a,b) and continuous on [a,b],
Thus by Rolle’s Theorem
there is a number c between a and b such thatf'(c) = 0, But

fl(x)=3x*+1 =1 forallx
(since x* = 0 ) so f'(x) can never be 0.This gives a contraduction .Therefore the
equation can’t have two real root.



Exercises:

Q1:
Test if Lagrange’s Mean Value Theorem holds for the functionf (x) = |x| in the
interval [—1,1].

Q2:

Applying Lagrange’s Mean Value Theoremto the function defined by f(x) =
tan~x in [, v], show that — < tan™'v — tan"'u < —, if 0 <u < wv.

14+v 1+u
Q3:
2

Discuss the applicability of Rolle’s Theoremto f(x) = 2 + (x — 1)3 in [0,2].
Q4:

Verify whether the function f(x) = sinx in [0,m] satisfies the condition of
Rolle’s Theorem and hence find c as prescribed by the theorem.

Q5:

sina—sin
Show that sina—sing

= cot#, WhereO<a<9<,B<§.

cosf—cosa

By Cauchy’s Mean Value Theorem.






