CHAPTER THREE

Differentiation of Functions

In this chapter, we discuss the notions of sequences and convergence of sequences to give the definition of derivative in a space \mathbb{R} with usual metric space.

Definition 3.1: Let I be an open interval in \mathbb{R} and $f: I \rightarrow \mathbb{R}$ be a real valued function. $\operatorname{Let}\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in I such that $x_{n} \rightarrow x_{0}$ for some $x_{0} \in I$ and $x_{n} \neq x_{0}$. Then we say that f is differentiable at x_{0} or it has a derivative at x_{0} if and only if the sequence $\left\{\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}\right\}_{n \in \mathbb{N}}$ is convergent to the same value λ in \mathbb{R}, for each sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in I where $x_{n} \rightarrow x_{0}$ and is denoted by $\left.\frac{d f}{d x}\right|_{x=x_{0}}$ or $f^{\prime}\left(x_{0}\right)$, so usually we can write

$$
\lambda=f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}
$$

Definition 3.2: Let $f: I \rightarrow \mathbb{R}$ be a real valued function define on an open intervall.Then we say that f is differentiable on I, if f is differentiable at each $x \in I$.

Example 3.3: By using the definition of differentiation if $f(x)=x^{2}$, then show that $\frac{d f}{d x}=2 x \quad \forall x \in D_{f}$.

Solution: Let $\left\{x_{n}\right\}$ be any sequence in D_{f} such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then the sequence
$\left\{\frac{f\left(x_{n}\right)-f(x)}{x_{n}-x}\right\}_{n \in \mathbb{N}}=\left\{\frac{\left(x_{n}\right)^{2}-x^{2}}{x_{n}-x}\right\}=\left\{x_{n}+x\right\}$.

Since $x_{n} \rightarrow x$ as $n \rightarrow \infty$, therefore $\left\{x_{n}+x\right\} \rightarrow 2 x$ as $n \rightarrow \infty$.
Then $f^{\prime}(x)=2 x$.

Theorem 3.4: If f is differentiable at x_{0}, then f is continuous at x_{0}.
Proof: Let f be a differentiable at x_{0}. Then the sequence $\left\{\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}\right\}_{n \in \mathbb{N}}$ is convergent to the same value λ in R_{f}, for each sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in D_{f} where $x_{n} \rightarrow x_{0}$, by using some properties of sequence we get that the multiplication of both $\left\{\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}\right\}_{n \in \mathbb{N}}$ and $\left\{x_{n}-x_{0}\right\}_{n \in \mathbb{N}}$ is also convergent sequence.

Then $\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}\left(x_{n}-x_{0}\right)=f\left(x_{n}\right)-f\left(x_{0}\right)$, is converges.
Which mean that the function $f\left(x_{n}\right)$ is converges to $f\left(x_{0}\right)$, by theorem 1.6 we get that f is continuous at x_{0}.

Remark 3.5: The converse of theorem 3.4 is not true in general.

For Example:
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|x|$, discuss continuity and differentiability of the function f at $x=0$.

Solution:

Since $f(x)=|x|$, is continuous for all $x \in \mathbb{R}$, then $f(x)=|x|$ is continuous at $x=0$ but is not differentiable at $x=0$, here we have to show that there exists at least two sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$, where $x_{n} \rightarrow 0$ and also $y_{n} \rightarrow 0$. While $\left\{\frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}\right\}_{n \in \mathbb{N}} \rightarrow \lambda_{1}$ and $\left\{\frac{f\left(y_{n}\right)-f(0)}{y_{n}-0}\right\}_{n \in \mathbb{N}} \rightarrow \lambda_{2}$ and $\lambda_{1} \neq \lambda_{2}$.
Put $\left\{x_{n}\right\}_{n \in \mathbb{N}}=\left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}=\left\{-\frac{1}{n}\right\}_{n \in \mathbb{N}}$.
So it is clear that $\frac{1}{n} \rightarrow 0$ and $-\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$.

While $\quad \frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\frac{\left|\frac{1}{n}\right|}{\frac{1}{n}}=\frac{\frac{1}{n}}{\frac{1}{n}}=1$, and $\quad \frac{f\left(y_{n}\right)-f(0)}{y_{n}-0}=\frac{\left|\frac{-1}{n}\right|}{\frac{-1}{n}}=\frac{\frac{1}{n}}{\frac{-1}{n}}=-1 \neq 1=$ $\frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}$, which mean that f is not differentiable at $x=0$.

Differentiation and Arithmetic Operation (H.W)

The following theorem should be familiar from calculus.
Theorem 3.6: If f and g are differentiable at x_{0}, then so are $f+g, f-$ g, and $f g$, with
a) $(f+g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)$.
b) $(f-g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-g^{\prime}\left(x_{0}\right)$.
c) $(f g)^{\prime}=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)$.
d) The quotients f / g is differentiable at x_{0} if $g\left(x_{0}\right) \neq 0$, with

$$
\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{\left(g\left(x_{0}\right)\right)^{2}} .
$$

Lemma 3.7: If f is differentiable at x_{0} then

$$
f(x)=f\left(x_{0}\right)+\left[f^{\prime}\left(x_{0}\right)+E(x)\right]\left(x-x_{0}\right)
$$

Where E is defined on a neighborhood of x_{0} and

$$
\lim _{x \rightarrow x_{0}} E(x)=E\left(x_{0}\right)=0
$$

Proof: Define

$$
E(x)=\left\{\begin{array}{lr}
\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)}-f^{\prime}\left(x_{0}\right), & x \in D_{f} \text { and } x \neq x_{0} \\
0 & x=x_{0}
\end{array}\right.
$$

If $x \neq x_{0}$ then $E(x)=\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)}-f^{\prime}\left(x_{0}\right)$,
then $f(x)=f\left(x_{0}\right)+\left[f^{\prime}\left(x_{0}\right)+E(x)\right]\left(x-x_{0}\right)$ and (3) is obvious if $x=x_{0}$.

Then $\lim _{x \rightarrow x_{0}} E(x)=0$. We define $E\left(x_{0}\right)=0$, to make E continuous at x_{0}.

Theorem 3.8: (The Chain Rule)

Suppose that g is differentiable at x_{0} and f is differentiable at $g\left(x_{0}\right)$.then the composite function $h=f o g$, defined by $h=f(g(x))$. Is differentiable at x_{0}, with $h^{\prime}\left(x_{0}\right)=f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)$.
Proof
since f differentiable at $g\left(x_{0}\right)$ by lemma 3.7 implies that

$$
f(t)-f\left(g\left(x_{0}\right)\right)=\left[f^{\prime}\left(g\left(x_{0}\right)\right)+E(t)\right]\left(t-g\left(x_{0}\right)\right)
$$

Where

$$
\lim _{x \rightarrow x_{0}} E(t)=E\left(g\left(x_{0}\right)\right)=0
$$

Letting $t=g(x)$,
then $f(g(x))-f\left(g\left(x_{0}\right)\right)=\left[f^{\prime}\left(g\left(x_{0}\right)\right)+E(g(x))\right]\left(g(x)-g\left(x_{0}\right)\right)$

Since $h(x)=f(g(x))$, this implies that

$$
\frac{h(x)-h\left(x_{0}\right)}{x-x_{0}}=\left[f^{\prime}\left(g\left(x_{0}\right)\right)+E(g(x))\right] \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}
$$

since g is differentiable at x_{0} then g is continuous at x_{0} (by theorem 3.4) and Theorem1 12. imply that

$$
\lim _{x \rightarrow x_{0}} E(g(x))=E\left(g\left(x_{0}\right)\right)=0
$$

Therefore $\quad \lim _{x \rightarrow x_{0}} \frac{h(x)-h\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)$.
Then $h^{\prime}\left(x_{0}\right)=f^{\prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)$.

Applications of Differentiation

Definition 3.9: A function f has an absolute maximum (or global maximum) at c if $f(c) \geq f(x)$ for all x in D, where D is the domain of f.the number $f(c)$ is called the maximum value off on D. Similarly, f has an absolute minimum at c if $f(c) \leq f(x)$ for all x in D and the number $f(c)$ is called the minimum value of f on D. The maximum and minimum values of fare called the extreme values of f.

FIGURE 1
Minimum value $f(a)$, maximum value $f(d)$

Definition 3.10: A function f has a local maximum (or relative maximum) at c if $f(c) \geq f(x)$ where x near c [this means that $f(c) \geq f(x)$ for all x in some open interval containing $c]$.the number $f(c)$ is called the maximum value of f on D. Similarly, f has a local minimum at c if $f(c) \leq f(x)$ when x near c.

The Extreme Value Theorem 3.11:

If f is continuous on a closed interval $[a, b]$ then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some number c and d in $[a, b]$.

Fermat's Theorem 3.12:

If f has a local maximum or minimum at c and if $f^{\prime}(c)$ exist, then $f^{\prime}(c)=0$. Proof:
suppose that f has local maximum at c, then according to Definition $f(c) \geq f(x)$ if x is sufficiently close to c, and if h is sufficiently close to 0 , with h being positive or negative ,then

$$
f(c) \geq f(c+h)
$$

And therefore

$$
f(c+h)-f(c) \leq 0
$$

We can divide both sides of an inequality by a positive number .thus, if $h>0$ and h is sufficiently small, we have

$$
\frac{f(c+h)-f(c)}{h} \leq 0
$$

Taking the right-hand limit of both sides of this inequality, we get

$$
\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \leq \lim _{h \rightarrow 0^{+}} 0=0
$$

But since f(c) exist, we have

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}
$$

And so we have shown that $f^{\prime}(c) \leq 0$.
If $h<0$, then the direction of the inequality(1) is reversed when we divided by $h:$

$$
\frac{f(c+h)-f(c)}{h} \geq 0 \quad h<0
$$

So taking the left-hand limit, we have

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h} \geq 0
$$

We have shown that $f^{\prime}(c) \geq 0$ and also that $f^{\prime}(c) \leq 0$. Then $f^{\prime}(c)=0$.

Definition 3.12: A critical number of a function f is a number c in the domain of f such that eitherf $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Mean Value Theorems

Rolle's Theorem 3.13: Letf be a function that satisfies the following three hypotheses:

1. fis continuouse on the closed interval $[a, b]$.
2. fis differentiable on the open interval (a, b).
3. $f(a)=f(b)$

Then there exists c in (a, b) such that $f^{\prime}(c)=0$.

(Figure 2)

Proof: There are three cases
CaseI: If $f(x)=k, a$ constant. Then $f^{\prime}(x)=0$,
so the number c can be taken to be any number in (a, b).
Case II: If $f(x)>f(a)$ for some x in (a, b) [as in figure $2(b)$ or (c)]
By the Extreme Value Theorem (which we can apply by hypothese 1), f has a maximum value somewhere in $[a, b]$. since $f(a)=f(b)$, it must attain this maximum value at a number c in the open interval (a, b). Then f has a local maximum at c and, by hypethesis $2, f$ is differentiable on (a, b) and c in (a, b) them f is differentiable at c.Therefore, $f^{\prime}(c)=0$ by fermat's Theorem.
Case III: If $f(x)<f(a)$ for some x in (a, b) [as in figure 2(c) or (d)]. By the Extreme Value Theorem, f has a mnimum value in $[a, b]$ and since $f(a)=f(b)$ it attains this minimum value at a number c in (a, b). Then f has a local minimum at c and by hypethesis 2 , f is differentiable on (a, b) and c in (a, b) them f is differentiable at $c . T h e r e f o r e, f^{\prime}(c)=0$ by fermat's Theorem.

Theorem 3.14:(Lagrange's Mean Value Theorem Or First Mean Value Theorem)

Let f be contiuous on $[a, b]$, and differentiable on (a, b). Then there exists c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \text { or equivalently } f(b)=f(a)+(b-a) f^{\prime}(c) .
$$

Figure 4.3: Graphical interpretation of the mean value theorem.

Proof

The theorem following easily from Rolle's Theorem.
Define the function $g:[a, b] \rightarrow R$

$$
g(x)=f(x)-f(b)+(f(b)-f(a)) \frac{b-x}{b-a} .
$$

Then we know that g is a differentiable function on (a, b) and continuous on [$a, b]$ such that $g(a)=0$ and $g(b)=0$.Thus there exist $c \in(a, b)$ such that $g^{\prime}(c)=0$.

$$
0=g^{\prime}(c)=f^{\prime}(c)+(f(b)-f(a)) \frac{-1}{b-a}
$$

Then $f(b)-f(a)=(b-a) f^{\prime}(c)$.
For a geometric interpretation of the mean value theorem see figure 3 .The idea is that the value $\frac{f(b)-f(a)}{b-a}$ is the slop of the line between the point $(a, f(a))$ and $(b, f(b))$. Then c is the point such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$, that is the tangent line at the point $(c, f(c))$ has the same slope as the line between $(a, f(a))$ and $(b, f(b))$.

Example 3.15:

Verify Lagrange's Mean Value Theorem for the function $f(x)=x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$.

Solution

Since f is a polynomial then f is continuous in $\left[0, \frac{1}{2}\right]$ and differentiable in $\left(0, \frac{1}{2}\right)$.
Thus there exists c in $\left[0, \frac{1}{2}\right]$ such that $\frac{f\left(\frac{1}{2}\right)-f(0)}{\frac{1}{2}-0}=f^{\prime}(c)$.
Now

$$
\begin{equation*}
f^{\prime}(x)=(x-1)(x-2)+x(x-1)+x(x-2) \tag{1}
\end{equation*}
$$

then

$$
f^{\prime}(x)=3 x^{2}-6 x+2, \quad f(0)=0 \text { and } f\left(\frac{1}{2}\right)=\frac{3}{8} .
$$

From(1), $\quad \frac{3}{8}=\frac{1}{2}\left(3 c^{2}-6 c+2\right)$ then $12 c^{2}-24 c+5=0$
Then $\quad c=\left(6 \pm \frac{\sqrt{21}}{6}\right)$, only $1-\frac{\sqrt{21}}{6}$ lies in $\left(0, \frac{1}{2}\right)$.
Hence we get $\quad c=1-\frac{\sqrt{21}}{6}$ and the theorem is verified.

Some Useful Deduction From The Mean Value Theorem

Proposition 3.16:

Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)=0$ for all x in I.Then f is constant .

Proof

By contrapositive. Suppose that f is not constant, then there exist x and y in I such that $x<y$ and $f(x) \neq f(y)$ then f restricted to $[x, y]$ satisfies the hypotheses of the first mean value theorem. Therefore there is a $c \in$ (x, y) such that $\quad f^{\prime}(c)=\frac{f(y)-f(x)}{y-x}$,
then $f(y)-f(x)=f^{\prime}(c)(y-x)$.
Since $y \neq x$ and $f(y) \neq f(x)$ then $f^{\prime}(c) \neq 0$.

Proposition 3.17:

Let $f: I \rightarrow \mathbb{R}$ be a differential function and fis increasing if and only if
$f^{\prime}(x) \geq 0$ for all $x \in I$.

Proof:

Suppose that fis increasing and differential function then for all x and c in I
we have $\quad \frac{f(x)-f(c)}{x-c} \geq 0$
Then $\quad \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c) \geq 0$
Hence $\quad f^{\prime}(c) \geq 0$.
Conversely
Suppose that $f^{\prime}(x) \geq 0$ for all $x \in I$. Let $x>y$ in I. Then by the first mean value theorem there is some $c \in(x, y)$ such that

$$
f(x)-f(y)=f^{\prime}(c)(x-y)
$$

Since $f^{\prime}(c) \geq 0$ and $x-y>0$, then $f(x)-f(y) \geq 0$.
So f is increasing.

Proposition 3.18 (H.W)

Let $f: I \rightarrow \mathbb{R}$ be a differential function and f is decreasing if and only if $f^{\prime}(x) \leq 0$ for all $x \in I$.

Theorem3.19:(Cauchy Mean Value Theorem OR Second Mean Value Theorem) If f and g are continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b),then

$$
[g(b)-g(a)] f^{\prime}(c)=[f(b)-f(a)] g^{\prime}(c)
$$

for some c in (a, b).

Proof The function

$$
h(x)=[g(b)-g(a)] f(x)-[f(b)-f(a)] g(x)
$$

Is continuous on $[a, b]$ and differentiable on (a, b),
and $h(a)=h(b)=g(b) f(a)-f(b) g(a)$.
Therefore, Rolle's Theorem implies that $h^{\prime}(c)=0$ for some c in (a, b).
since $h^{\prime}(c)=[g(b)-g(a)] f^{\prime}(c)-[f(b)-f(a)] g^{\prime}(c)$
then $0=[g(b)-g(a)] f^{\prime}(c)-[f(b)-f(a)] g^{\prime}(c)$
therefore, $\quad[g(b)-g(a)] f^{\prime}(c)=[f(b)-f(a)] g^{\prime}(c)$.

Example 3.20:

Verify the Cauchy's mean value theorem for the functions x^{2} and x^{3} in $[1,2]$ and also find c of this theorem.

Solution

Let $f(x)=x^{2}$ and $g(x)=x^{3}$. Since $f(x)$ and $g(x)$ are both polynomial functions, so they are continuous on $[1,2]$ and differentiable on $(1,2)$.
Also $g^{\prime}(x)=3 x^{2} \neq 0$ for any point in $(1,2)$.
Hence by Cauchy's mean value theorem there exists at least one number c in $(1,2)$ such that $[g(2)-g(1)] f^{\prime}(c)=[f(2)-f(1)] g^{\prime}(c)$
Then $(8-1) 2 c=(4-1) 3 c^{2}$, there fore $c=\frac{14}{9}$ lies in $(1,2)$.
Hence Cauchy's mean value theorem is verified.

The Intermediate Value Theorem 3.21: (W.H)

Suppose that f is continuouse on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$ where $f(a) \neq f(b)$. Then there exist a number c in (a, b) such that $f(c)=N$.

Example 3.22:

Prove that the equation $x^{3}+x-1=0$ has exactly one real root.
Solution First we use the Intermediate Value Theorem to show that a root exist .
Let $f(x)=x^{3}+x-1$.Then $f(0)=-1<0$ and $f(1)=1>0$.
Since f is polynomial ,it is continuous, so the Intermediate Value Theorem state that there is a number c between 0 and 1 such that $f(c)=0$.Thus, the given equation has a root.
To show that the equation has no another real root, we use Rolle's Theorem and by contraduction suppose that it had two roots a and b.Then $f(a)=0=f(b)$ and since f is polynomia, it is differentiable on (a, b) and continuous on $[a, b]$, Thus by Rolle's Theorem
there is a number c between a and b such that $f^{\prime}(c)=0$, But

$$
f^{\prime}(x)=3 x^{2}+1 \geq 1 \quad \text { for all } x
$$

(since $x^{2} \geq 0$) so $f^{\prime}(x)$ can never be 0 .This gives a contraduction.Therefore the equation can't have two real root.

Exercises:

Q1:

Test if Lagrange's Mean Value Theorem holds for the functionf $(x)=|x|$ in the interval $[-1,1]$.

Q2:

Applying Lagrange's Mean Value Theoremto the function defined by $f(x)=$ $\tan ^{-1} x$ in $[u, v]$, show that $\frac{v-u}{1+v^{2}}<\tan ^{-1} v-\tan ^{-1} u<\frac{v-u}{1+u^{2}}$, if $0<u<v$.
Q3:
Discuss the applicability of Rolle's Theorem to $f(x)=2+(x-1)^{\frac{2}{3}}$ in $[0,2]$. Q4:
Verify whether the function $f(x)=\operatorname{sinx}$ in $[0, \pi]$ satisfies the condition of Rolle's Theorem and hence find c as prescribed by the theorem.
Q5:
Show that $\frac{\sin \alpha-\sin \beta}{\cos \beta-\cos \alpha}=\cot \theta$, where $0<\alpha<\theta<\beta<\frac{\pi}{2}$.
By Cauchy's Mean Value Theorem.

