Mathematical Analysis

Ms:Sebar Hage Jumha Question Bank 2nd semester

Q1-Theorem: A mapping $f: X \to Y$ of a metric space (X, d) in to a metric space (Y, ρ) is continuous on X if and only if $f^{-1}(F)$ is closed in X for all closed subsets F of Y.

Q2-Example: Let f be a mapping of \mathbb{R} into \mathbb{R} defined by

$$f(x) = \begin{cases} \frac{1}{x} & \text{when } x \neq 0\\ 0 & \text{at } x = 0 \end{cases}$$

Find whether f is continuous with respect to the usual metric for \mathbb{R}

Q3-Example: Let f be a mapping of \mathbb{R} into \mathbb{R} defined by

$$f(x) = \begin{cases} 1 & where \quad x > 0 \\ 0 & where \quad x = 0. \\ -1 & where \quad x < 0 \end{cases}$$

Find whether f is continuous with respect to the usual metric for \mathbb{R} .

Q4-Example: Let f be a mapping of \mathbb{R} into \mathbb{R} defined by

$$f(x) = \begin{cases} 5 & where \quad x \ge 0\\ -5 & where \quad x < 0 \end{cases}$$

Find whether f is continuous with respect to the usual metric for \mathbb{R} .

Q5-Example; Let *f* be a mapping of \mathbb{R} into \mathbb{R} defined by $f(x) = x^2$. Find whether *f* is continuous with respect to the usual metric for \mathbb{R} .

Q6-Example:

- Show that $f(x) = \sin x^2$ is not uniform continuous on $[0, \infty)$.
- Show that $f(x) = \sin x$ is uniform continuous on $[0, \infty)$.
- Show that $f(x) = \cos \frac{1}{x}$ is continuous on (0, 1] but it is not uniform continuous on (0, 1].

Q7-Example: Let $f:(0,1) \to \mathbb{R}$ defined by $f(x) = e^x$. Is f is uniform continuous on (0,1)?

Q8Example: Is $f(x) = \frac{e^x}{x}$ uniform continuous on [2, 5].

Q9-Example: Is $f(x) = \frac{1}{x^2}$ uniform continuous on (0,1) and (1, ∞).

Q10-Example:

Show that the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$, where $f_n(x) = nx(1-x)^n$ is not uniformly convergent on [0, 1]. (by using M_n Test).

Q11-Example:

Consider the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ of functions defined by $f_n(x) =$

$$\frac{x^2+nx}{n}$$
 converges

Pointwise to f(x) = x on all $x \in \mathbb{R}$ but not uniformly converges on \mathbb{R} .

Q12-Example:

Show that the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ $f_n: [2, \infty) \to \mathbb{R}$, where $f_n(x) = \frac{1}{1+x^n}$ is uniformly convergent on $[2, \infty)$.

Q13-Example:

Consider the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ of functions defined by $f_n(x) =$

 $\frac{nx}{1+n^2x^2}$ converges Pointwise to f(x) = 0 but not uniformly converges on \mathbb{R} .

Q14-Example:

Consider the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ of functions defined by $f_n(x) = \frac{\sin(nx+3)}{\sqrt{1+n}} f(x) = 0.$

Q15-Example:

Let $f_n(x) = \frac{1}{n(1+x^2)}$ for any $x \in \mathbb{R}$ so that f_n is convergent pointwise to the function f(x). Is f_n uniformly converges on \mathbb{R} or not?

Q16-Example:

Let $f_n: [-1,1] \to \mathbb{R}$ defined by $f_n(x) = \cos(\frac{n\pi}{1+x^2})$. To show that f_n is not convergent pointwise on [-1,1].

Q17-Example:

Consider the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ of functions defined by $f_n(x) = \frac{x^2 + nx}{n^2}$ converges Pointwise to f(x) = 0 but not uniformly converges.

Q18-Example:

Show that the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ where $f_n(x) = nxe^{-nx^2}, x \ge 0$ is not uniform converges on [0, k], k > 0. (by using M_n Test).

Q19-Example:

Show that the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ where $f_n(x) = x^{n-1}(1-x)$ converges uniformly in the interval [0,1].(by using M_n Test).

Q20-Example:

- Test the uniform convergence the series $\sum_{n=1}^{\infty} xe^{-nx}$ in the closed interval [0, 1].
- Show that the sequence $\{g_n(x)\}$ where $g_n(x) = \frac{\sin nx}{\sqrt{n}}$ is uniformly converges *on* $[0, \pi]$.
- Test for uniform convergence of the following series on \mathbb{R} :