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CHAPTER ONE 
 

  THE REAL NUMBER SYSTE 

Introduction: 

In this chapter, we shall introduce the system of real numbers as a complete ordered 

field structure. While we shall give a precise description of what is mean by a 

complete ordered field, we shall in this manner actually only define the system of 

real numbers. This implies that we are laying down this definition of the system of 

real numbers on an axiomatic basis for discussion and development of Real 

Analysis. It will be seen that the sets of Natural numbers, Integers and Rational 

numbers will arise as sub-sets of the sets of Real numbers. 

Note. The system of real numbers in an axiomatic manner starting from the system 

of rational numbers has been constructed by different mathematicians. We mention 

in this connection the names of Georg Cantor (1845-1918), Richard Dedekind 

(1831-1916) and Karl Weierstrass (1815-1897). 

Real Numbers and the Number Line 

Real numbers 

Real Numbers are made up of rational numbers and irrational numbers. 

The Number Line 

       We may use the number line to represent all the real numbers graphically; each real 

number corresponds to exactly one point on the number line. ∞  and -∞ are not real 

numbers because there is no point on the number line corresponding to either of them. 

Important Sets of Real Numbers 

➢ The natural numbers are 1, 2, 3, 4, 5, …, so that the set of natural numbers is 

define by  ℕ = {1, 2, 3, 4, 5, … }. 

➢ The set ℤ of integers consists of the numbers … , −3, −2, −1, 0, 1, 2, 3, …, so that 

the set ℤ of integers is define by 

 ℤ = {𝑚: −𝑚 ∈ ℕ; 𝑜𝑟 𝑚 = 0; 𝑜𝑟 𝑚 ∈ ℕ}. 
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➢ The rational numbers are of the form  
𝑝

𝑞
 where 𝑝, 𝑞 are arbitrary integers with 

𝑞 ≠ 0, so that the set ℚ of rational numbers is define by ℚ = {
𝑝

𝑞
:  𝑝 ∈ ℤ, 𝑞 ∈ ℕ}. 

➢ A real number which is not rational is called irrational. For example √2, √8, 𝜋 

and 𝑒, etc. Are irrational numbers. 

➢ The set of real numbers is denoted by ℝ. 

Field Properties 

A set  {𝑎, 𝑏, 𝑐, … } on which the operations of addition and multiplication are defined so 

that every pair of real numbers has a unique sum and product, both real numbers, with 

the following properties: 

(A) 𝑎 + 𝑏 = 𝑏 + 𝑎  𝑎𝑛𝑑  𝑎𝑏 = 𝑏𝑎   ∀ 𝑎, 𝑏 ∈ ℝ.             (Commutative laws) 

(B) (𝑎 + 𝑏) + 𝑐 = 𝑏 + (𝑎 + 𝑐)  and (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)   ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ.      (associative 

laws) 

(C) 𝑎(𝑏 + 𝑐) = (𝑎𝑏 + 𝑎𝑐)    ∀ 𝑎, 𝑏, 𝑐 ∈ ℝ.      (Distributive law) 

(D) There are distinct real numbers 0 and 1 such that 𝑎 + 0 = 𝑎  and 𝑎1 = 𝑎  for all 𝑎. 

(E) For each 𝑎 ∈ ℝ there is a real number −𝑎 such that 𝑎 + (−𝑎) = 0, and if  𝑎 ≠ 0, 

there is a real number   
1

𝑎
  such that  𝑎 

1

𝑎
= 1. 

The manipulative properties of the real numbers, such as the relations: 

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2, 

(3𝑎 + 2𝑏)(4𝑐 + 2𝑑) = 12𝑎𝑐 + 6𝑎𝑑 + 8𝑏𝑐 + 4𝑏𝑑, 

−𝑎 = (−1)𝑎,   𝑎(−𝑏) = (−𝑎)𝑏 = −𝑎𝑏, 

and 

𝑎

𝑏
+

𝑐

𝑑
=

𝑎𝑑+𝑏𝑐

𝑏𝑑
   (𝑏𝑑 ≠ 0),  

all follow from (A)–(E). We assume that you are familiar with these properties. A set on 

which two operations are defined so as to have properties (A)–(E) is called a field. The 

real number system is by no means the only field. 
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The Order Relation 

The real number system is ordered by the relation <, which has the following 

properties: 

(F) For each pair of real numbers 𝑎   and  𝑏, exactly one of the following is true: 

                  𝑎 = 𝑏,    𝑎 < 𝑏,   𝑜𝑟    𝑏 < 𝑎. 

(G) If  𝑎 < 𝑏  and  𝑏 < 𝑐, then 𝑎 < 𝑐.   (The relation < is transitive) 

(H) If  𝑎 < 𝑏, then  𝑎 + 𝑐 < 𝑏 + 𝑐  for any 𝑐, and if  𝑐 > 0 then 𝑎𝑐 < 𝑏𝑐. 

A field with an order relation satisfying (F)–(H) is an ordered field. Thus, the real 

numbers form an ordered field. The rational numbers also form an ordered field. 

Upper and Lower Bounds 

1.1 Definition:  Let  𝐴 ⊂ ℱ, where  ℱ is an ordered field. 

a) We say that 𝛼 ∈ ℱ, is an upper bound of 𝐴 if for all 𝑥 ∈ 𝐴 then 𝛼 ≥ 𝑥. 

b) We say that 𝛽 ∈ ℱ, is an lower bound of 𝐴 if for all 𝑥 ∈ 𝐴 then 𝛽 ≤ 𝑥. 

c) We say that 𝐴 is bounded above If there exists 𝛼 ∈ ℱand 𝛼 is an upper 

bound of 𝐴. 

d) We say that 𝐴 is bounded below If there exists 𝛽 ∈ ℱ and 𝛽 is a lower bound 

of 𝐴. 

e) A set is said to be bounded if it is both bounded above and bounded below. 

A set is said to be unbounded if it is not bounded. 

Maximum and Minimum Elements 

1.2 Definition:   Let 𝐴 ⊆ ℝ. 

-We say that  𝑢 ∈ ℝ  is a greatest element or maximum of 𝐴 if  

                      (i)                𝑢 ∈ 𝐴  and 

                      (ii)               𝑥 ≤ 𝑢  for all 𝑥 ∈ 𝐴 . In this case we write  𝑢 = 𝒎𝒂𝒙 𝐴. 

-We say that  𝑣 ∈ ℝ is a least element or minimum of 𝐴 if  

(i) 𝑣 ∈ 𝐴  and 

(ii) 𝑣 ≤ 𝑥  for all 𝑥 ∈ 𝐴. In this case we write  𝑣 = 𝒎𝒊𝒏 𝐴. 
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1.3 Example:   1 is the maximum of  (0,1] but there is no minimum for this set.  

1.4 Proposition:  A maximum (if it exists) is unique. Similarly, a minimum is unique. 

 

Supremum and Infimum 

1.5 Definition   Let  𝐴 ⊂ ℱ, where  ℱ is an ordered field. 

- We say that  𝛼 ∈ ℱ is a supremum or a least upper bound of A if it satisfies the 

conditions:  

i. 𝛼 is an upper bound of A, and 

ii. If  𝑢 is any upper bound of A, then 𝛼 ≤ 𝑢, for all 𝑢. We write 𝒔𝒖𝒑𝐴 = 𝛼. 

 

- We say that  𝛽 ∈ ℱ is a infimum or a greatest lower bound of A if it satisfies the 

conditions:  

i. 𝛽 is a lower bound of A, and 

ii. If 𝒗 is any lower bound of A, then  𝛽 ≥ 𝑣, for all 𝑣.We write  𝒊𝒏𝒇𝐴 = 𝛽. 

 

 

 

Figure -1-     Supremum and infimum 
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1.6 Examples 

(1) If 𝑆 = {
4𝑛+3

𝑛
: 𝑛 ∈ ℕ} then any 𝛽 ≤ 4  is a lower bound, 𝑖𝑛𝑓𝑆 = 4 ∉ S and 𝛼 ≥ 7 is 

an upper bound, 𝑠𝑢𝑝𝑆 = 7 ∈  𝑆. The set S is bounded above and below 

(2) If 𝑆 = ℕ then any 𝛽 ≤ 1  is a lower bound, 𝑖𝑛𝑓𝑆 = 1 ∈ 𝑆. There is no upper bound 

for S. The set S is bounded below but not above. 

 (3) If S = {1,
1

2
,

1

3
, … ,

1

𝑛
, … } then 𝑖𝑛𝑓𝑆 = 0 ∉ 𝑆 and 𝑠𝑢𝑝𝑆 = 1 ∈ 𝑆. The set S is bounded 

above and below. 

 

1.7 Lemma   An upper bound 𝑢 of a nonempty set 𝑆 in ℝ is the supremum of 𝑆 if and 

only if for every  𝜀 > 0 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 𝑠𝜀 ∈ 𝑆  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑢 − 𝜀 < 𝑠𝜀 .   

Proof: Suppose that 𝑢 = 𝒔𝒖𝒑 𝑆 and let  𝜀 > 0. Since 𝑢 − 𝜀 < 𝑢, then  𝑢 − 𝜀  is not an 

upper bound of S. Therefore, some element 𝑠𝜀 of 𝑆 must be greater than  𝑢 − 𝜀; that is,    

𝑢 − 𝜀 < 𝑠𝜀 . 

Conversely, if 𝑢 is an upper bound of S that satisfies the stated conditions and if    

𝑣 < 𝑢, assume that 𝑣 is another upper bound of 𝑆 .To show that 𝑢 = 𝑠𝑢𝑝𝑆 . We have to 

show that 𝑣 ∈ 𝑆  ,then we put  𝜀 = 𝑢 − 𝑣.  Then  𝜀 > 0, so there exists  𝑠𝜀 ∈ 𝑆  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝑣 = 𝑢 − 𝜀 < 𝑠𝜀 .  Therefore, 𝑣 is not an upper bound of 𝑆, and we conclude that 𝑢 =

𝒔𝒖𝒑 𝑆.          

 

The Completeness Axiom (Supremum property) 

Suppose 𝐴 is a nonempty set of real numbers which is 

1. 𝐴 bounded above, then 𝐴 has a supremum (or l.u.b.) in ℝ. and 

2. 𝐴 bounded below, then 𝐴 has infimum (or g.l.b.'s) in ℝ.  

➢ The real number system is a complete ordered field

➢ Is every nonempty set that is bounded above has a supremum? We will see in 

example 1.6(1, 2). 

 



 

 6 

The Archimedean Property 

The property of the real numbers described in the next theorem is called the 

Archimedean property. Intuitively, it states that it is possible to exceed any positive 

number, no matter how large, by adding an arbitrary positive number, no matter how 

small, to itself sufficiently many times. 

1.8 Theorem (The Archimedean Property) 

 For any  𝑥 and 𝑦 are positive, then there exists a natural number  𝑛 such that   𝑛𝑥 > 𝑦. 

Proof   The proof is by contradiction. If the statement is false then  𝑛𝑥 ≤ 𝑦   ∀𝑛 ∈ ℕ , 

that is 𝑦  an upper bound of the set   𝐴 = {𝑛𝑥: 𝑛 ∈ ℕ }. Then  𝐴 is bounded above by 

Completeness Axiom, the set 𝐴 has a supremum  𝛼. Therefore      𝑛𝑥 ≤ 𝛼   ∀ 𝑛 ∈ ℕ               

Since  𝑛 + 1 ∈ ℕ  then  (𝑛 + 1)𝑥 ≤ 𝛼, therefore,  𝑛𝑥 ≤ 𝛼 − 𝑥    ∀ 𝑛 ∈ ℕ.   

Hence  𝛼 − 𝑥 is an upper bound of  𝐴. 

Since  𝛼 − 𝑥 < 𝛼, we contradict the statement that 𝛼 is the least upper bound of 𝐴.     

1.9 Theorem (Archimedean Property of the Natural Numbers) Let 𝛼 ∈ ℝ. Then   

  𝛼 < 𝑛 for some  𝑛 ∈ ℕ (i. e. ℕ is not bounded above). 

Proof   If not true, then 𝑛 ≤ 𝛼 for all 𝑛 ∈ ℕ; therefore,  𝛼 is an upper bound of ℕ. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 by The Completeness Axiom, the non empty set ℕ has a supremum 𝑢 ∈ ℝ. So  

𝑢 − 1 < 𝑢 of ℕ. Therefore 𝑢 − 1 is not an upper bound of ℕ. So there exists 𝑚 ∈ ℕ with 

𝑢 − 1 < 𝑚. Adding 1 gives  𝑢 < 𝑚 + 1, and since 𝑚 + 1 ∈ ℕ, this inquality contradicts 

the fact that 𝑢 is an upper bound of  ℕ. 

1.10 Corollary For any  𝜀 > 0, there exists 𝑛 ∈ ℕ such that   0 <
1

𝑛
< 𝜀. 

Proof    Assume there is no natural number 𝑛 such that  0 <
1

𝑛
< 𝜀. Then for every 𝑛 ∈ ℕ 

it follows that  
1

𝑛
≥ 𝜀  and hence  𝑛 ≤

1

𝜀
 .  Hence  

1

𝜀
  is an upper bound for ℕ, 

contradicting the previous Theorem. Hence there is a natural number 𝑛 such that  0 <
1

𝑛
< 𝜀. 

1.11 Corollary If 𝑦 > 0, there exists 𝑚 ∈ ℕ such that   𝑚 − 1 ≤ 𝑦 < 𝑚. Proof: [H.W] 



 

 7 

1.12 Theorem (The Archimedean Property) 

 If  𝑥 and 𝑦 are two given real numbers with 𝑥 > 0, then there exists a natural number  

𝑛 such that   𝑛𝑥 > 𝑦. 

Proof: [H.W] 

Characteristic of supremum and infimum 

1- The necessary and sufficient condition for a real number  𝛼 to be the supremum of a 

bounded above set 𝐴 is that  𝛼 must satisfy the following conditions: 

(i) 𝛼 ≥ 𝑥  ∀ 𝑥 ∈ 𝐴 

(ii)For each positive real number 𝜀, there exists a real number 𝑎 ∈ 𝐴 such that  𝛼 −

𝜀 < 𝑎 ≤ 𝛼. 

2- The necessary and sufficient condition for a real number  𝛽 to be the infimum of a 

bounded below set 𝐴 is that  𝛽 must satisfy the following conditions: 

(i) 𝛽 ≤ 𝑥  ∀ 𝑥 ∈ 𝐴 

(ii)For each positive real number 𝜀, there exists a real number 𝑎 ∈ 𝐴 such that  𝛽 ≤

𝑎 < 𝛽 + 𝜀. 

 

1.13 Example:  Let 𝑆 = {
1

𝑛
∶  𝑛 ∈ ℕ}. Show that 𝒔𝒖𝒑𝑆 = 1. 

Solution:  Since 
1

𝑛
≤ 1  for all  𝑛 ∈ ℕ, then 1 is an upper bound. To show that 1 is the 

supremum, it must be shown that for each  𝜀 > 0 there exists 𝑛 ∈ ℕ such that                       

 1 −
1

𝑛
> 1 − 𝜀. By Archimedean Property we have  

1

𝑛
< 𝜀, hence  1 − 𝜀 < 1 −

1

𝑛
∈ 𝑆, so 

by Characteristic of supremum and infimum (1) we get the result. 

 

1.14 Example:    Let 𝑆 = {1 −
1

3𝑛
: 𝑛 ∈ ℕ}. Show that 𝒊𝒏𝒇𝑺 =

2

3
. 

Solution: By Archimedean Property we have for all 𝜀 > 0 there exists 𝑛 ∈ ℕ such that  
1

𝑛
< 𝜀, then 

2

3
+

1

𝑛
<

2

3
+ 𝜀. Since 

1

𝑛
>

1

3𝑛
 therefore 1 −

3𝑛−1+1

3𝑛
<

2

3
+

1

𝑛
<

2

3
+ 𝜀, hence  

2

3
+

𝜀 > 1 −
3𝑛−1+1

3𝑛
∈ 𝑆, by Characteristic of supremum and infimum (2) we get  𝒊𝒏𝒇𝑺 =

2

3
.              
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1.15: Lemma Let 𝐴 ⊆ ℝ be a bounded above .If A possess a maximum element α     

𝑆𝑢𝑝(𝐴) = 𝛼. 

Proof   Let  𝛼 = 𝑚𝑎𝑥(𝐴) .Then by definition 𝛼 ≥ 𝑥 ∀𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝛼 ∈ 𝐴  ,by contradiction 

if  

 𝑆𝑢𝑝(𝐴) ≠ 𝛼 ⇒ 𝛽 ≠ 𝛼 and  𝑆𝑢𝑝(𝐴) = 𝛽 ⇒ 𝛽 ≥ 𝑥 ∀𝑥 ∈ 𝐴, and  𝛽 < 𝑢. 𝑏(𝐴)  for all 

𝑢. 𝑏(𝐴)   

 ⇒ 𝛼 < 𝛽 < 𝑢. 𝑏(𝐴) ⇒ 𝑥 ≤ 𝛼 < 𝛽 < 𝑢. 𝑏(𝐴)    ∀𝑥 𝑡ℎ𝑒𝑛 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑢𝑐𝑡𝑖𝑜𝑛 so that      

𝛽 = 𝑆𝑢𝑝(𝐴). 

Rational and Irrational Numbers 

Elements of ℝ (real numbers) that can be written as  𝑟 =
𝑝

𝑞
 , where  𝑝 and 𝑞 ∈ ℤ 

and 𝑞 ≠ 0 are called rational numbers. The set of all rational numbers in ℝ will be 

denoted by the standard notation ℚ. the sum and product of two rational numbers is 

again a rational number. 

One consequence is that elements of ℝ that are not in ℚ became known as 

irrational numbers, meaning that they are not ratios of integers. 

 

1.16 Theorem   There is no element  𝑟 ∈ ℚ such that  𝑟2 = 2. 

Proof   The proof is by contradiction. There is a rational number 𝒓, then we could write 

𝑟 =
𝑝

𝑞
 , where  𝑝 and 𝑞 ∈ ℤ 𝑎𝑛𝑑 𝑞 ≠ 0.  Further we could assume that 𝑔. 𝑐. 𝑑(𝑝, 𝑞) = 1, 

such that  
𝑝2

𝑞2
= 2, so 𝑝2 = 2𝑞2. As  𝑝2 is even then  𝑝 is also even. We can then write  𝑝 =

2𝑚 and hence  𝑞2 = 2𝑚2. That means 𝑞 is also even so we can write 𝑞 = 2𝑛. 

Hence  𝑟 =
2𝑛

2𝑚
, therefore  𝑔. 𝑐. 𝑑(𝑝, 𝑞) ≠ 1, this is the required contradiction. 

1.17 Proposition   If  𝑥 ∈ ℚ and 𝑦 ∈ 𝑰𝑟𝑟, then 

i) (𝑥 + 𝑦) ∈ 𝑰𝑟𝑟. 

ii) 𝑥𝑦 ∈ 𝑰𝑟𝑟 such that  𝑥 ≠ 0. [H.W] 

Proof: Suppose that   𝑥 ∈ ℚ and 𝑦 ∈ 𝑰𝑟𝑟, we must to prove that (𝑥 + 𝑦) ∈ 𝑰𝑟𝑟. 
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Assume that (𝑥 + 𝑦) ∉ 𝑰𝑟𝑟 then (𝑥 + 𝑦) ∈ ℚ , we can write 𝑥 + 𝑦 = 𝑧 ∈ ℚ  

 then 𝑦 = 𝑧 − 𝑥,  since 𝑥 ∈ ℚ and 𝑧 ∈ ℚ  then 𝑦 ∈ ℚ, this is contradicts the fact that 𝑦 is 

an irrational number. 

Density of the Rationales and Irrationals 

1.18 Theorem(ℚ is dense in ℝ) If  𝑥, 𝑦 ∈ ℝ and 𝑥 < 𝑦, then there exists an 𝑟 ∈ ℚ  such 

that  𝑥 < 𝑟 < 𝑦.   

Proof   Assume that  𝑥 > 0. Since 𝑦 − 𝑥 > 0, it follows from Corollary 1.10 that there 

exists 𝑛 ∈ ℕ such that  
1

𝑛
< 𝑦 − 𝑥. Therefore, we have 𝑛𝑥 + 1 < 𝑛𝑦. Since 𝑥 > 0 and 𝑛 ∈

ℕ, then 𝑛𝑥 > 0. If we apply Corollary 1.11 to 𝑛𝑥 > 0, we obtain  𝑚 ∈ ℕ with  𝑚 − 1 ≤

𝑛𝑥 < 𝑚. Therefore,  𝑚 ≤ 𝑛𝑥 + 1 < 𝑛𝑦, hence  𝑛𝑥 < 𝑚 < 𝑛𝑦, then  𝑥 <
𝑚

𝑛
< 𝑦. Thus the 

rational number  𝑟 =
𝑚

𝑛
  satisfies  𝑥 < 𝑟 < 𝑦.   

Now assume that 𝑥 < 0. (H. W) 

1.19 Theorem (The set of irrational numbers is dense in ℝ) If  𝑥, 𝑦 ∈ ℝ with 𝑥 < 𝑦, 

then there exists an irrational number 𝑧 such that  𝑥 < 𝑧 < 𝑦. 

Proof   If we apply the Theorem 1.18 to the real numbers  
𝑥

√2
  and  

𝑦

√2
, we obtain a 

rational number 𝑟 ≠ 0 such that     
𝑥

√2
< 𝑟 <

𝑦

√2
,  then  𝑥 < 𝑟√2 < 𝑦. 

Thus  𝑧 = 𝑟√2 is irrational (why?) and satisfies 𝑥 < 𝑧 < 𝑦.  
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Exercises: 

Q1: Let 𝜙 ≠ 𝐴 ⊆ ℝ be a bounded above and below then the supremum and infimum 

are unique. 

Q2: Which of the following sets are bounded above, bounded below or otherwise? Also 

Find the supremum and infimum of the following sets if they exists: 

• 𝐴 = {𝑥 ∈ ℝ: 2 ≤ 𝑥 < 3}. 

• 𝐵 = {√𝑛 + 1 − √𝑛, 𝑛 ∈ ℕ}. 

• ℤ = {… , −2, −1, 0, 1, 2, …    }. 

• 𝑆 = {1, 1 +
1

2
, 1 +

1

2
+

1

22
, … , 1 +

1

2
+

1

22
+ ⋯ +

1

2𝑛−1
, … }. 

• 𝐻 = {𝑥: 𝑥 ∈ ℚ, 𝑥 ≥ 0 and 𝑥2 < 0}.  

Q3: Suppose that A and B are nonempty subsets of ℝ that satisfy the property: 𝑥 ≤

𝑦  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵.  Show that sup A ≤ inf B. 

Q4: Define −𝐴 = {−𝑥: 𝑥 ∈ 𝐴}, prove that if 𝐴 is bounded set of ℝ, then −𝐴 is bounded. 

Q5: Show that there exists no rational number whose square is 8. 

Q6: show that If  𝑥2 is an irrational number then 𝑥 is also irrational. 

Q7: Show that:  

• 𝑠𝑢𝑝 {1 −
1

𝑛
: 𝑛 ∈ ℕ} = 1. 

• 𝑖𝑛𝑓 {𝑟 ∈ ℚ ∶ 𝑟2 < 3} = −√3. 

Q8: let 𝐴 and 𝐵 be bounded subsets of ℝ, then 

1. 𝑠𝑢𝑝(𝐴 +  𝐵)  =  𝑠𝑢𝑝 𝐴 +  𝑠𝑢𝑝 𝐵, 
2. 𝑖𝑛𝑓(𝐴 +  𝐵)  =  𝑖𝑛𝑓 𝐴 +  𝑖𝑛𝑓 𝐵, 

3. 𝑠𝑢𝑝(𝐴 −  𝐵)  =  𝑠𝑢𝑝 𝐴 −  𝑖𝑛𝑓 𝐵, 

4. 𝑖𝑛𝑓(𝐴 −  𝐵)  =  𝑖𝑛𝑓 𝐴 −  𝑠𝑢𝑝 𝐵. 

Q9: Let 𝜙 ≠ 𝐴, 𝐵 ⊆ ℝ be a bounded then: 
1. 𝑆𝑢𝑝(𝐴 ∪ 𝐵) = 𝑀𝑎𝑥{𝑆𝑢𝑝(𝐴), 𝑆𝑢𝑝(𝐵)}. 

2. 𝐼𝑛𝑓(𝐴 ∪ 𝐵) = 𝑀𝑖𝑛{𝐼𝑛𝑓(𝐴), 𝐼𝑛𝑓(𝐵)}. 
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