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CHAPTER THEER 

Sequence and Compactness 

 

Sequences in Metric Spaces  

3.1 Definition Let (𝑋, 𝑑) be a metric space, a sequence {𝑥𝑛} in 𝑋 is a function 

𝑓: ℕ → 𝑋, where 𝑓(𝑛) = 𝑥𝑛 then {𝑥1, 𝑥2, … } is called a sequence in 𝑋and 𝑥𝑛 is 

called the 𝑛𝑡ℎ term of the sequence. We also write {𝑥𝑛}𝑛=1
∞ , or just {𝑥𝑛}, for the 

sequence. 

 

Convergence of Sequences 

3.2 Definition Let (𝑋, 𝑑) be a metric space, a sequence {𝑥𝑛} ⊂ 𝑋 is said to be 

converges to a point 𝑥 ∈ 𝑋, written 𝑥𝑛 → 𝑥, if for every 𝜀 > 0 there exists 𝑘 ∈

ℕ such that ∀𝑛 ≥ 𝑘 𝑡ℎ𝑒𝑛  𝑑(𝑥𝑛, 𝑥) < 𝜀, the point  𝑥 is called the limit of {𝑥𝑛}, 

and sometimes we write 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛 = 𝑥 ⟺ 𝑙𝑖𝑚
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = 0. 

Thus, the sequence {𝑥𝑛} converges to 𝑥, if for every 𝜀 > 0 there exists the open 

ball 𝐵𝜀(𝑥) includes all terms of 𝑥𝑛, except a finite number of its terms. 

 

 

Figure 3.1 
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3.3 Example   The sequence { 
1

𝑛2
} is convergent to zero. 

Solution: For all 𝜀 > 0, to find  𝑘 ∈ ℕ  such that  ∀𝑛 ≥ 𝑘 then 𝑑(𝑥𝑛, 𝑥) < 𝜀. 

 Fix 𝜀 > 0, then ∃𝑘 ∈ ℕ such that  𝑘 >
1

√𝜀
. Now, if  𝑛 ≥ 𝑘 and 𝑘 >

1

√𝜀
  then  𝑛 >

1

√𝜀
    ⟹  −𝜀 < 0 <

1

𝑛2
< 𝜀  then  |

1

𝑛2
− 0| < 𝜀. 

3.4 Example The sequence { (−1)𝑛} is divergent.  

Solution: To show that whether |𝑥𝑛 − 𝑥| < 𝜀   ∀𝜀 , 𝑛 ≥ 𝑘 𝑓𝑖𝑥𝑒𝑑 𝑘 𝑠. 𝑡 𝑥𝑘 =

1 𝑎𝑛𝑑 𝜀 =
1

2
  , Now for starting with n=k we have |𝑥𝑛 − 𝑥| < 𝜀 ⇒  |1 −  𝑥 | <

𝜀 =
1

2
… . (1)  , the first n after k is n+1 and  

 𝑥𝑛+1 = −1 𝑠𝑜 |𝑥𝑛 − 𝑥| < 𝜀 ⇒  | − 1 −  𝑥 | < 𝜀 =
1

2
… (2) 

|1 − 𝑥| + |1 + 𝑥| =|1 − 𝑥|+|−1 − 𝑥|< 
1

2 
+

1

2 
= 1, but    2 = | 1 − 𝑥 + (1 + 𝑥)| ≤

|1 − 𝑥| + |1 + 𝑥| < 1 and that is a contradiction. 

   3.5 Theorem   A convergent sequence has a unique limit. 

Proof: Suppose (𝑋, 𝑑) is a metric space, a sequence {𝑥𝑛} ⊂ 𝑋, 𝑥, 𝑦 ∈ 𝑋, such 

that 𝑥𝑛 ⟶ 𝑥  as 𝑛 ⟶ ∞, and 𝑥𝑛 ⟶ 𝑦  as  𝑛 ⟶ ∞. Supposing  𝑥 ≠

𝑦,   𝑙𝑒𝑡  𝑑(𝑥, 𝑦) = 𝑟 > 0.  From the definition of convergence there exist 

𝑘1   𝑎𝑛𝑑  𝑘2 ∈ ℕ  such that 

                                𝑛 ≥ 𝑘1   ⟹   𝑑(𝑥𝑛, 𝑥) <
𝑟

4
,  

                                𝑛 ≥ 𝑘2     ⟹   𝑑(𝑥𝑛, 𝑦) <
𝑟

4
. 

Let  𝑘 = 𝑚𝑎𝑥 {𝑘1 , 𝑘2 }. Then 

               𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦) <
𝑟

4
+

𝑟

4
=

𝑟

2
,  i.e.  𝑑(𝑥, 𝑦) <

𝑟

2
, which is a 

contradiction. 
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3.6 Remark   If a sequence {𝑥𝑛}  converges to 𝑥, then  𝑥 is the only limit point 

of the sequence.  

3.7 Theorem   A set is closed if and only if it includes the limit of every 

sequence in it. 

Proof: Suppose that  𝒜 is a closed set and that {𝑥𝑛} is a sequence in 𝒜 with 

𝑥𝑛 → 𝑥. To prove that  𝑥 ∈ 𝒜, by contradiction. If  𝑥 ∉ 𝒜 ⟹ 𝑥 ∈ 𝒜𝑐 , since 𝒜𝑐  

is open ⟹ ∃ 𝜀 > 0 s. t. 𝐵𝜀(𝑥) ⊂ 𝒜𝑐 ⟹ 𝐵𝜀(𝑥) contain all, except finite number 

of the terms of {𝑥𝑛} contradiction to that  𝑥𝑛 ∈ 𝒜. 

Conversely, suppose that  𝒜 is includes the limit of every sequence in it. 

To prove that 𝒜 is closed, if not ⟹ 𝒜𝑐  is not open ⟹ ∃ 𝑥 ∈ 𝒜𝑐 s.t. 𝐵𝑟(𝑥) ∩ 𝒜 

has at least one point   ∀ 𝑟 > 0  ⟹ ∀ 𝑛 ∈ ℕ, ∃ 𝑥𝑛 ∈ 𝒜   𝑠. 𝑡   𝑑( 𝑥𝑛, 𝑥) <
1

𝑛
 ⟹

 𝑥𝑛 ∈ 𝒜 and convergent to 𝑥 𝑎𝑛𝑑 𝑥 ∉ 𝒜 (𝑜𝑟 𝑥 ∈ 𝒜𝑐). 

  

3.8 Definition   Let {𝑥𝑛} be a sequence in a metric space (𝑋, 𝑑) and {𝑛𝑘} be a 

strictly increasing sequence. i.e.   𝑛1 < 𝑛2 < 𝑛3 < ⋯ . Then the sequence {𝑥𝑛𝑘
} 

is called a subsequence of {𝑥𝑛}.     

 

3.9 Example   Let {𝑥𝑛} = {
1

𝑛 
} , 𝑛 ∈ ℕ. 

1.  The sequence  {
1

2 
,

1

4 
,

1

6 
,

1

8 
,

1

10 
,

1

12 
, … }  is a subsequence of {𝑥𝑛}. For we take 

𝑛𝑘 = 2𝑘 then the sequence is {𝑥𝑛𝑘
} = {

1

2𝑘 
} 𝑓𝑜𝑟   𝑘 = 1, 2, 3, … 

2.  The sequence  {
1

3 
,

1

5 
,

1

7 
,

1

9 
,

1

11 
,

1

13 
,

1

15 
, … }  is a subsequence of {𝑥𝑛}.  

 If we take 𝑛𝑘 = 2𝑘 + 1  then the sequence is {𝑥𝑛𝑘
} = {

1

2𝑘+1 
} for   𝑘 = 1, 2, 3, …. 

3.  The sequence {
1

4 
,

1

3 
,

1

2 
,

1

1 
,

1

5 
,

1

6 
,

1

7
, … } is not a subsequence of  {𝑥𝑛}.   

4.  𝑛𝑘 = 𝑘ǃ ⇒ 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑥𝑛𝑘} = {
1

𝑘ǃ
} = {1,

1

2
,

1

6
, … }  𝑓𝑜𝑟 𝑘 = 1,2,3, … is a 

subsequence of {𝑥𝑛}. 
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5.  𝑛𝑘 = 2𝑘 ⇒ 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑥𝑛𝑘} = {
1

2𝑘
} = {

1

2
,

1

4
,

1

8
, … }  𝑓𝑜𝑟 𝑘 = 1,2,3, … is a 

subsequence of {𝑥𝑛}. 

 

3.10 Lemma   If  𝑛𝑘 is a strictly increasing sequence of natural numbers then  

𝑛𝑘 ≥ 𝑘 for all 𝑘 ∈ ℕ. 

Proof: We shall prove this by induction. When  𝑘 = 1, since 𝑛𝑘 ∈ ℕ, it follows 

that 𝑛𝑘 ≥ 1 = 𝑘. Now suppose that  𝑛𝑘 ≥ 𝑘 for a certain  𝑘 ∈ ℕ. Then, since 

the sequence is strictly increasing,  𝑛𝑘+1 > 𝑛𝑘 . However, since the  𝑛𝑘 are 

natural numbers, this means that  𝑛𝑘+1 ≥ 𝑛𝑘 + 1, and so  

                                        𝑛𝑘+1 ≥ 𝑛𝑘 + 1 ≥ 𝑘 + 1,  

by the induction hypothesis. 

3.11 Theorem   If the sequence {𝑥𝑛} converges to 𝑥  if and only if all its 

subsequences also converge to 𝑥.   

Proof: Suppose that the sequence {𝑥𝑛} converges to 𝑥 and {𝑥𝑛𝑘
} is a subsequence 

of  {𝑥𝑛}. We must show that the sequence {𝑥𝑛𝑘
} is also convergent to 𝑥, 

this means that            𝑙𝑖𝑚
𝑛→∞

𝑥𝑛𝑘
= 𝑥.   

Since  {𝑥𝑛} converges to 𝑥  then ∀𝜀 > 0 there exists 𝑘 ∈ ℕ such that  𝑑(𝑥𝑛, 𝑥) <

𝜀 for all  𝑛 ≥ 𝑘 and since {𝑛𝑘} is a strictly increasing sequence then (by Lemma 

3.10) we get 𝑛𝑘 ≥ 𝑚  ∀𝑚 ∈ ℕ and if  𝑚 ≥ 𝑘 ⟹ 𝑘 ≤ 𝑚 ≤ 𝑛𝑘 then 𝑛𝑘 ≥ 𝑘. It 

follows that ∀𝜀 > 0 ∃𝑘 ∈ ℕ such that  𝑑(𝑥𝑛𝑘
, 𝑥) < 𝜀  for all 𝑛𝑘 ≥ 𝑘.  

3.12 Example   The sequence {𝑥𝑛} = {(−1)𝑛 (1 −
1

𝑛 
)}  diverges.  

Solution: The sequence {𝑥2𝑘} = {(−1)2𝑘 (1 −
1

2𝑘
)} is a subsequence of {𝑥𝑛}, 

then   𝑥2𝑘 = 1 −
1

2𝑘 
 converges to 1, and {𝑥2𝑘+1} = {(−1)2𝑘+1 (1 −

1

2𝑘+1
)}         
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is a subsequence of {𝑥𝑛}, then  𝑥2𝑘+1 =
1

2𝑘+1
− 1 converges to −1.                 

Thus, (by Theorem 3.11) we get {𝑥𝑛} does not converge.   

 

3.13 Definition   A sequence {𝑥𝑛} of real numbers is said to be bounded if 

there exists a real number 𝑀 > 0 such that  |𝑥𝑛| ≤ 𝑀 for all  𝑛 ∈ ℕ.   

 

3.14 Example   A sequence  {𝑥𝑛} = {(−1)𝑛} ∈ ℝ  is bounded since there exists 

𝑀 = 1 ∈ ℝ  such that  |(−1)𝑛| ≤ 1   ∀𝑛 ∈ ℕ. 

 

3.15 Remark   Every convergent sequence is bounded but the converse is not 

true. 

 

3.16 Theorem (Bolzano-Weierstrass Theorem) Every bounded sequence in 

ℝ  has a convergent subsequence. [H.W] 

 

Cauchy Sequences 

3.17 Definition   Let (𝑋, 𝑑) be a metric space. A sequence {𝑥𝑛} ⊂  𝑋 is said to 

be a Cauchy sequence if, for every 𝜀 > 0, there exists a natural number 𝑘 such 

that 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀  whenever 𝑚, 𝑛 ≥ 𝑘. 

We sometimes write this as  𝑑(𝑥𝑛, 𝑥𝑚) ⟶ 0  as  𝑚, 𝑛 ⟶ ∞. 

3.18 Example   In ((0,1), 𝑑), the sequence  {
1

𝑛 
} is a Cauchy sequence. 

Solution: Let  𝜀 > 0 be given. Take  𝑘 >
2

𝜀
. Then for  𝑛 ≥ 𝑘 we have that  

1

𝑛 
<

𝜀

2 
. 

Therefore, for all  𝑛, 𝑚 ≥ 𝑘 we have  

                                       𝑑(𝑥𝑛, 𝑥𝑚) = |
1

𝑛 
−

1

𝑚 
| ≤ |

1

𝑛 
| + |

1

𝑚
| <

𝜀

2 
+

𝜀

2 
= 𝜀. 



 
 

 

 36 

3.19 Theorem   A convergent sequence in a metric space is a Cauchy sequence.  

Proof: Let {𝑥𝑛}  be a sequence in a set 𝑋 with metric 𝑑, and let 𝑥 be an element 

of 𝑋 such that 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛 = 𝑥. Given any 𝜀 > 0, there exists some natural number 

𝑘 such that 𝑑(𝑥𝑛, 𝑥) <
𝜀

2 
 whenever  𝑛 ≥ 𝑘. Consider any natural numbers 𝑛 

and 𝑚 such that  𝑛 ≥ 𝑘 and  𝑚 ≥ 𝑘. Then 𝑑(𝑥𝑛, 𝑥) <
𝜀

2 
 and 𝑑( 𝑥𝑚, 𝑥) <

𝜀

2 
.  

 Therefore       𝑑(𝑥𝑛, 𝑥𝑚) ≤ 𝑑(𝑥𝑛, 𝑥) + 𝑑(𝑥, 𝑥𝑚) <
𝜀

2 
+

𝜀

2 
= 𝜀. 

But the converse of this theorem is not hold. See example 3.20 

3.20 Example   Let (ℝ − {0}, 𝑑) be a usual metric space, then the sequence {
1

𝑛
} 

is a Cauchy sequence in ℝ − {0}, but not convergent in ℝ − {0}, since 
1

𝑛
 is 

convergent to 0 and 0 ∉ ℝ − {0}.  

This example tells every Cauchy sequence is not convergent sequence in (𝑋, 𝑑) 

in general. 

 

3.21 Remark   In ℝ  a sequence converges if and only if it is a Cauchy 

sequence. But in (𝑋, 𝑑) every convergent sequence is a Cauchy sequence.  

 

3.22 Example   Let (ℝ, 𝑑) be a metric space and {
𝑛+1

𝑛
} ⊂ ℝ. prove that the 

sequence {
𝑛+1

𝑛
} is a Cauchy sequence. 

Solution:  Let  𝜀 > 0 be given, to find 𝑘 ∈ ℕ such that ∀ 𝑛, 𝑚 ≥ 𝑘 then 

𝑑(𝑥𝑛, 𝑥𝑚) <  𝜀. (By Archimedean property)  𝜀 > 0 and 2 ∈ ℝ  then there exists 

𝑘 ∈ ℕ such that 𝑘𝜀 > 2 ⟹ 𝑘 >
2

𝜀
 Now, if 𝑛, 𝑚 ≥ 𝑘   then   

1

𝑛
<

 𝜀

2
  and   

1

𝑚
<

𝜀

2
.  

Therefore     𝑑(𝑥𝑛, 𝑥𝑚) = |
𝑛+1

𝑛 
−

𝑚+1

𝑚 
| = |

1

𝑛 
−

1

𝑚 
| ≤ |

1

𝑛 
| + |

1

𝑚
| <

𝜀

2 
+

𝜀

2 
= 𝜀. 
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Complete metric space 

3.23 Definition A metric space (𝑋, 𝑑)  is said to be complete if every Cauchy 

sequence in X is convergent to a point in X. 

 

3.24 Example   Any set  𝑋 with the discrete forms a complete metric space. 

Solution:  Let  {𝑥𝑛} be a Cauchy sequence in the discrete metric space  𝑋.  

Then 𝑑(𝑥𝑛, 𝑥𝑚) = 0, if  𝑥𝑛 = 𝑥𝑚 and  𝑑(𝑥𝑛, 𝑥𝑚) = 1, if  𝑥𝑛 ≠ 𝑥𝑚. On taking  

0 < 𝜀 ≤ 1 in the definition of Cauchy sequence, we obtain    𝑑(𝑥𝑛, 𝑥𝑚) <

𝜀     ∀ 𝑛, 𝑚 ≥ 𝑘       … 1 

Using the definition of the discrete metric space. (1) yields  𝑑(𝑥𝑛, 𝑥𝑘) = 0 for 

each 𝑛        then  𝑥𝑛 → 𝑥𝑘  as  𝑛 → ∞. Hence discrete metric space 𝑋 is 

complete. 

3.25 Example   Let  𝑋 =]0,1[ and let 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|   ∀ 𝑥, 𝑦 ∈ 𝑋, then show 

that (𝑋, 𝑑) is an incomplete metric space. 

 Solution:  Let  {𝑥𝑛} be a Cauchy sequence in  𝑋 defined by  𝑥𝑛 =
1

𝑛
     ∀𝑛 ∈ ℕ.  

Then as shown in example 3.18 and 3.20,   {𝑥𝑛}  is a Cauchy sequence in  𝑋 and 

{𝑥𝑛}  cannot convergent to any point of 𝑋. Hence (𝑋, 𝑑) is an incomplete metric 

space.  

3.26 Theorem   If  (𝑋, 𝑑) is complete and  𝐷 ⊂ 𝑋 is closed then (𝐷, 𝑑) is a 

complete metric space. 

Proof: Since (𝑋, 𝑑) is complete metric space then any Cauchy sequence in 𝑋 is 

convergent to a point in  𝑋, and since 𝐷 is closed then by (Theorem 2.37) we 

get 𝐷 contains all its limit points ⟹ ∀ Cauchy sequence in 𝐷 its convergent to 

a point in 𝐷. Hence (𝐷, 𝑑) is complete metric space.       

3.27 Theorem   Every Euclidean space is complete. [H.W] 
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“Compactness” 

History and motivation 

The history of what today is called the Heine–Borel theorem starts in the 

19th century, with the search for solid foundations of real analysis. Central to 

the theory was the concept of uniform continuity and the theorem stating that 

every continuous function on a closed interval is uniformly continuous. 

Dirichlet was the first to prove this and implicitly he used the existence of a 

finite sub-cover of a given open cover of a closed interval in his proof. He used 

this proof in his 1862 lectures, which were published only in 1904. Later 

Eduard Heine, Karl Weierstrass and Salvatore Pincherle used similar 

techniques. Émile Borel in 1895 was the first to state and prove a form of what 

is now called the Heine–Borel theorem. His formulation was restricted to 

countable covers. Pierre Cousin (1895), Lebesgue (1898) and Schoenflies 

(1900) generalized it to arbitrary covers. The term compact was introduced by 

Fréchet in 1906.   

 

3.28 Definition (Cover of a set) Let  (𝑋, 𝑑) be a metric space and 𝒜 ⊆ 𝑋. Let 

 𝐺 = {𝐴𝛼}𝛼∈Λ be a collection of open sets in 𝑋, then 𝐺 = {𝐴𝛼}𝛼∈Λ is said to be 

an ‘‘open cover’’ or an ‘‘open covering’’ of  𝒜  if   𝒜 ⊆ ⋃ 𝐴∝𝛼∈Λ . 

 

3.29 Definition   A metric space (𝑋, 𝑑)  is said to be compact if every open 

covering  𝐺 of 𝑋 has a finite sub covering, that is, there is a finite sub collection 

{𝐴1, 𝐴2, … , 𝐴𝑛} ⊆ 𝐺 such that  𝑋 = ⋃ 𝐴𝑖
𝑛
𝑖=1  . 

http://www.answers.com/topic/uniform-continuity
http://www.answers.com/topic/continuous-function
http://www.answers.com/topic/johann-peter-gustav-lejeune-dirichlet
http://www.answers.com/topic/eduard-heine
http://www.answers.com/topic/karl-weierstra
http://www.answers.com/topic/salvatore-pincherle
http://www.answers.com/topic/mile-borel-1
http://www.answers.com/topic/countable-set
http://www.answers.com/topic/henri-lebesgue
http://www.answers.com/topic/arthur-moritz-sch-nflies
http://schools-wikipedia.org/wp/1/1906.htm
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A set  𝒜 ⊆ 𝑋 of a metric space (𝑋, 𝑑) is compact if every open cover of  𝒜 has a 

finite sub-cover of 𝒜. 

                i.e. if 𝒜 ⊆ ⋃ 𝐴𝑖𝑖∈⋏ ⟶ 𝒜 ⊆ ⋃ 𝐴𝑖
𝑛
𝑖=1 . 

 

3.30 Example  (0,1) ⊆ ℝ  is not compact in a usual metric space (ℝ, 𝑑). 

Solution: Let 𝐺 = {𝐴∝ = (
1

∝
, 2) : ∝∈ ℕ } = {(1,2), (

1

2
, 2) , (

1

3
, 2) , … } be an 

open cover of  (0,1). Hence (0,1)  ⊆ ⋃ (
1

∝
, 2)∝∈ℕ . We need to show that this 

open cover 𝐺 𝑜𝑓 (0, 1) has no a finite sub-cover of (0, 1). By contradiction 

assume that   (0,1) ⊆ ⋃ (
1

∝
, 2)𝑘

∝=1 = (1,2) ∪ (
1

2
, 2) ∪ … ∪ (

1

𝑘
, 2) = (

1

𝑘
, 2), but 

from 0 up to 
1

𝑘
 there are several (in fact infinite number   s.t  

1

𝑘+3
, … <

1

𝑘+1
<

1

𝑘
,  there fore  (0,1) ⊈ (

1

𝑘
, 1) ⟹  (0,1) ⊈ ⋃ (

1

∝
, 2)𝑘

∝=1 . 

Which mean that (0,1) is not compact.   

 

3.31 Example   In any metric space (𝑋, 𝑑). Every finite sub-set of  𝑋 is compact. 

Solution: Let 𝒜 = {𝑎𝑖: 1 ≤ 𝑖 ≤ 𝑛 } be a finite sub-set of  𝑋, and 𝐺 = {𝐴𝑖}𝑖∈Λ  be 

an open cover of  𝒜 this means that  𝒜 ⊆ ⋃ 𝐴𝑖𝑖∈⋏ . We must to show  𝒜 ⊆

⋃ 𝐴𝑖
𝑛
𝑖=1 . 

Then for each 𝑎𝑖 ∈ 𝒜, there exist an open set 𝐴𝑖 ∈ 𝐺 such that 𝑎𝑖 ∈ 𝐴𝑖    ∀ 𝑖 =

1, 2, … , 𝑛. Then the family  {𝐴𝑖: 1 ≤ 𝑖 ≤ 𝑛 } is clearly a finite open cover of 

𝒜 consisting of member of 𝐺. Then 𝒜 ⊆ 𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑛  ⟹  𝒜 ⊆ ⋃ 𝐴𝑖
𝑛
𝑖=1 . 

Hence 𝒜 is a compact set.  

 

3.32 Example  ℝ is not compact with a usual metric.  

Solution:    Let {𝐴𝛼}𝛼∈Λ = {(−𝛼, 𝛼)}𝛼∈ℕ be an open cover of  ℝ,  
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 this means that  ℝ ⊆ ⋃ (−𝛼, 𝛼).𝛼∈ℕ  We need to show that this open cover 

{𝐴𝛼}𝛼∈Λ 𝑜𝑓 ℝ  has no a finite sub-cover of  ℝ . By contradiction suppose this 

open cover {𝐴𝛼}𝛼∈Λ has a finite sub-cover {𝐴𝛼}𝛼∈Λ when Λ = {1, 2, … , k} then 

ℝ ⊆ ⋃ 𝐴𝛼 .𝑘
∝=1  But ⋃ (−𝛼, 𝛼) = (−1,1) ∪ (−2, 2) ∪ … ∪ (−𝑘, 𝑘) = (−𝑘, 𝑘)𝑘

∝=1 , 

since 𝑘 ∈ ℝ  and  𝑘 ∉ (−𝑘, 𝑘) then   ℝ ⊈ ⋃ (−𝛼, 𝛼).𝑘
∝=1  Then the finite sub-

cover is not cover ℝ. Hence ℝ is not compact. 

 

3.33 Definition   Let (𝑋, 𝑑) be a metric space. We say that  𝒜 ⊆  𝑋 is bounded 

if there is an open ball  𝒜 ⊆  𝐵𝑟(𝑥). (i.e if  ∃𝑘 > 0  𝑠. 𝑡  𝑑(𝑥, 𝑦) ≤ 𝑘   ∀ 𝑥, 𝑦 ∈ 𝒜). 

 

3.34 Theorem Every compact set is bounded. 

Proof: Let  𝒜 be compact, for each  𝑥 ∈ 𝒜, let   𝐵𝑥 be a ball of radius 1 with 

center 𝑥. Then the collection  {𝐵𝑥: 𝑥 ∈ 𝒜} of open sets that cover 𝒜. Hence 

there must be a finite sub-cover say as, 𝐵𝑥1
, 𝐵𝑥2

, … , 𝐵𝑥𝑛
 that covers  𝒜 ⟹ 𝒜 ⊆

 ⋃ 𝐵𝑥𝑖

𝑛
𝑖=1 ⟹ 𝒜 is bounded. 

 

3.35 Proposition: Let (𝑋, 𝑑) be a metric space and 𝒜 ⊆ 𝑋. Then a point 𝑥 in a 

metric space is a limit point of 𝒜 if and only if there is a sequence of distinct 

points {𝑥𝑛}𝑛∈ℕ in 𝒜 such that  𝑥𝑛 → 𝑥 𝑎𝑠 𝑛 ⟶ ∞. [H.W] 

 

3.36 Remark Any compact metric space is complete. 

 

3.37 Theorem Let 𝒜 be a subset of the metric space (𝑋, 𝑑). If 𝒜 is compact, 

then 𝒜 is a closed subset of  (𝑋, 𝑑). 
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Proof: Let 𝑥 ∈ 𝑋 be an arbitrary limit point of 𝒜. Then by proposition 3.35, 

there exists a sequence {𝑥𝑛}𝑛∈ℕ in 𝒜 converging to 𝑥. In order to prove that 𝒜 

is closed we must show that 𝑥 ∈ 𝒜. Since {𝑥𝑛}𝑛∈ℕ is convergent sequence in 𝒜, 

it is a Cauchy sequence in  𝒜. Since 𝒜 is compact, then 𝒜 is complete. Hence 

{𝑥𝑛}𝑛∈ℕ converges to a point in 𝒜 and this point is clearly 𝑥. Thus 𝑥 ∈ 𝒜. Since 

𝑥 is any limit point of 𝒜, so all limit points of 𝒜 belong to 𝒜 and hence 𝒜 is 

closed.  

 

3.38 Theorem Every closed subset of compact set is compact. 

Proof: Let 𝑌 be a compact subset of a metric space (𝑋, 𝑑) and 𝒜 be a closed 

subset of  𝑌, relative to 𝑋. To show that 𝒜 is compact. Let   𝐺 = {𝐴𝛼: 𝛼 ∈ ⋏} be 

any open cover of 𝒜, then then  𝐺∗ = {𝐴𝛼: 𝛼 ∈ ⋏} ∪ {𝑋 − 𝒜} is an open cover 

of  𝑌. Since 𝑌 is compact, hence it has a finite sub- subcover. Say 𝐴𝛼1
, 𝐴2, … 𝐴𝛼𝑛

,

𝑋 − 𝒜, so that 𝐴𝛼1
∪ 𝐴2 ∪  … 𝐴𝛼𝑛

∪ (𝑋 − 𝒜) = 𝑋 and so 𝒜 ⊆ ∪ {𝐴𝛼𝑖
: 𝑖 =

1, 2, … 𝑛}      ⟹  {𝐴𝛼𝑖
: 𝑖 = 1, 2, … 𝑛}  is a finite sub-cover of 𝒜. Hence 𝒜 is 

compact. 

 

3.39 Theorem (Sequentially compact) Let (ℝ, 𝑑) be a metric space and 𝒜 ⊆

ℝ is said to be compact if and only if every sequence in 𝒜 has a convergent 

subsequence in 𝒜 . [H.W] 

 

3.40 Example   Show that weather the open interval (−1,1) ⊆ ℝ  is compact 

or not? 

Solution: If  {𝑥𝑛} = {1 −
1

𝑛
} is a sequence of (−1,1) and {𝑛𝑘} = {2𝑘} is 

increasing sequence then {𝑥𝑛𝑘
} = {1 −

1

2𝑘
} is a subsequence of {𝑥𝑛}. 
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Since 𝑥𝑛𝑘
= 1 −

1

2𝑘
⟶ 1 ∉ (−1, 1) as 𝑘 ⟶ ∞ 

then the subsequence {𝑥𝑛𝑘
} of  {𝑥𝑛} has no convergent in (−1, 1). Thus by 

above theorem we get (−1, 1) is not compact. 

 

3.41 Theorem (Cantor nested interval theorem) 

For each 𝑛 ∈ ℕ, let  𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] be a non-empty closed bounded interval of 

real numbers such that  𝐼1 ⊃  𝐼2 ⊃ 𝐼3 ⊃ ⋯ ⊃ 𝐼𝑛 ⊃ 𝐼𝑛+1 ⊃ ⋯  and  

lim
𝑛→∞

𝑏𝑛 − 𝑎𝑛 = lim
𝑛→∞

𝑙( 𝐼𝑛) = 0, where  𝑙(𝐼𝑛) denotes the length of the interval  

𝐼𝑛. Then ⋂ 𝐼𝑛
∞
𝑛=1  contains precisely one point. 

 

3.42 Theorem (Heine-Borel theorem)   

Every closed and bounded interval on ℝ is compact. 

Proof: Let  𝐼1 = [𝑎, 𝑏] = [𝑎1, 𝑏1] be a closed and bounded interval on ℝ. 

Suppose that 𝐼1 is not compact. Then there exists an open cover 𝐺 =

{𝐴𝛼: 𝛼 ∈ ⋏} of  𝐼1 which has no finite sub cover. Bisect 𝐼1 into two equal closed 

intervals  𝐼11 = [𝑎1,
𝑎1+𝑏1

2
] and  𝐼12 = [

𝑎1+𝑏1

2
, 𝑏1]. Then by our hypothesis, at 

least one of these two intervals must have no finite sub-cover of the open 

cover  𝐺. Let that particular interval be denoted by 𝐼2 as follows: 𝐼2 = [𝑎2, 𝑏2], 

where 𝐼2 = 𝐼11 𝑜𝑟 𝐼12 . As before, Bisect  𝐼2 into two equal closed intervals 

 𝐼21 = [𝑎2,
𝑎2+𝑏2

2
] and  𝐼22 = [

𝑎2+𝑏2

2
, 𝑏2] at least one of these two intervals which 

has no finite sub cover and obtain 𝐼3 = [𝑎3, 𝑏3], where 𝐼3 = 𝐼21 𝑜𝑟 𝐼22. On 

repeating the above process an infinite number of times, we arrive at a 

sequence of closed intervals 𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑛, … and satisfying the following 

conditions:  
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i. 𝐼1 ⊃  𝐼2 ⊃ 𝐼3 ⊃ ⋯ ⊃ 𝐼𝑛 ⊃ 𝐼𝑛+1 ⊃ ⋯  𝑖. 𝑒  𝐼𝑛 ⊃ 𝐼𝑛+1    ∀ 𝑛 ∈ ℕ 

ii. 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] is a closed interval     ∀ 𝑛 ∈ ℕ 

iii. lim
𝑛→∞

𝑙( 𝐼𝑛) = 0,  where  𝑙(𝐼𝑛) denotes the length of the interval  𝐼𝑛 

iv. 𝐼𝑛 is not covered by any finite sub-family of 𝐺. 

We obtain the sequence of closed intervals  {𝐼𝑛}𝑛∈ℕ satisfies all the conditions 

of Cantor nested interval theorem, and hence there exists a real number 𝑥 ∈∩

{𝐼𝑛: 𝑛 ∈ ℕ}. 𝑇ℎ𝑒𝑛  𝑥 ∈ 𝐼𝑛 ⊂ 𝐼1 ⊂ ∪ {𝐴𝛼: 𝛼 ∈ ⋏} so that  𝑥 ∈ 𝐴𝛼0
 for some 𝛼0 ∈⋏. 

Since 𝐴𝛼0
 is open, there exists 𝜀 > 0 such that  (𝑥 − 𝜀, 𝑥 + 𝜀) ⊂ 𝐴𝛼0

. Now we 

can take 𝑛 so large that  𝐼𝑛 ⊂ (𝑥 − 𝜀, 𝑥 + 𝜀) ⊂ 𝐴𝛼0
 , whence 𝐼𝑛 is covered by a 

single member 𝐴𝛼0
 of  𝐺. But this contradicts the fact that 𝐺 has no finite 

subcover of  𝐼1. The theorem is thus proved. 
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Exercises: 

Q1: Show that the following sequances are convergent with a usual metric 

1. {
𝟏

𝟐𝒏
}𝒏∈ℕ 

2. {𝟏 + (
(−𝟏)𝒏

𝒏
)}𝒏∈ℕ 

3. {
𝟏

𝒏+𝟏
}𝒏∈ℕ 

4. {√𝒏 + 𝟏 − √𝒏}𝒏∈ℕ 
 

Q2: Show that (ℝ, 𝑑) is complete metric space.  

 
Q3: Show that (ℚ, 𝑑) is not complete metric space. 
 

Q4: Show that 𝒮 = {
1

𝑛
, 𝑛 ∈ ℕ} ∪ {0}  is compact in a usual metric space(ℝ, 𝑑). 

 
Q5: Show that ℤ and ℝ are not compact with a usual metric. 

 
Q6: Show that weather the closed interval [0, 9] ⊆ ℝ is compact or not? 

 
Q7: Show that [1, ∞) ⊆ ℝ is not compact with a usual metric. 
 

 


