CALCULUSII

Ms:Sebar Hage Jumha

Question Bank.Second Semester 2023-2024

- **1.** Find the points of discontinuity of the function $f(x) = \begin{cases} 0 & \text{if } x < -2 \\ -x & \text{if } -2 \le x < 0 \\ x^2 1 & \text{if } x \ge 0 \end{cases}$
- 2. Find the points of discontinuity of the function $f(x) = \begin{cases} \frac{x^2 9}{x 3}, & x \neq 3 \\ 4, & x = 3 \end{cases}$.
- **3.** Find the value of the constant k so that the function f defined below is continuous at x = 0

$$f(x) = \begin{cases} \frac{1 - \cos(4x)}{8x^2} & x \neq 0\\ k & x = 0 \end{cases}$$

- 4. Use the definition of the derivative to compute f'(x), for $f(x) = \frac{1}{2}x \frac{3}{5}$.
- 5. Find $\frac{dy}{dx}$, for $y = \pi^{x \tan x}$.
- 6. Prove that $cosh^2x sinh^2x = 1$.
- 7. Find the following limits:

$$1-\lim_{x\to\infty}\,\frac{\ln\,(\ln x)}{x}\,.$$

2-
$$\lim_{x \to \frac{\pi}{4}} [(1 - tanx)sec2x].$$

3-
$$\lim_{x\to 0} (1 + \sin 2x)^{\frac{1}{x}}$$

8. Find the following limits:

$$1-\lim_{x\to 1}\,\frac{\ln x}{x-1}$$

1-
$$\lim_{x \to 1} \frac{\ln x}{x-1}$$
. 2- $\lim_{x \to \infty} x e^{-x}$.

- 9. By using parts to find the following integral $\int lnx \, dx$.
- 10. By using partial Fractions to find the following integral $\int \frac{x-12}{x^3+4x^2} dx$.
- 11. By using parts to find the following integral $\int x \cos x \, dx$.

12. By using partial Fractions to find the following integral $\int \frac{3x-17}{x^2-2x-3} dx$.

13. By using substitution to find the following integral $\int \frac{\sin\theta}{\sqrt{1-\cos^2\theta}} d\theta$.

Exercise 1: Assume that y is a function of x.

(1) Find
$$y' \text{ for } \sin(x^2 y^2) = x$$
.

(2) Find
$$y'$$
 for $x = \frac{1}{\sin y}$.

(3) Find v' for $e^{xy} = e^{4x} - e^{5y}$.

(1)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x^4}\right)$$
.

(2)
$$\lim_{x\to 0} \left(\csc x - \frac{1}{x}\right)$$

(3)
$$\lim_{x\to\infty} (x - \ln(x^2 + 1))$$

Exercise 2: Compute (1)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x^4}\right)$$
. (2) $\lim_{x\to 0} \left(\csc x - \frac{1}{x}\right)$
(3) $\lim_{x\to \infty} \left(x - \ln(x^2 + 1)\right)$ (4) $\lim_{x\to \frac{\pi}{2}} \cos x \csc(\cos x)$

Exercise 3: Find the following limits:

$$1-\lim_{x\to\infty}\frac{\ln{(\ln x)}}{x}.$$

$$2-\lim_{x\to\frac{\pi}{4}}[(1-tanx)sec2x].$$

3-
$$\lim_{x\to 0} (1 + \sin 2x)^{\frac{1}{x}}$$

Exercise 4: Find the following limits:

$$1. \lim_{x\to\infty}\frac{2^x}{3^x}$$

1.
$$\lim_{x \to \infty} \frac{2^x}{3^x}$$
 2. $\lim_{x \to 0^+} \tan^{-1}(\ln x)$ 3. $\lim_{x \to \infty} \frac{5^x}{3^x + 2^x}$

$$3. \lim_{x\to\infty} \frac{5^x}{3^x+2^x}$$

Exercise 5: By using parts to find the following integral $\int (\ln x)^2 dx$.

Exercise 6: By using partial Fractions to find the following integral

$$\int \frac{3x^2 + x + 1}{(x - 1)(x^2 + 4)} \, dx$$

Exercise 7: By using parts to find the following integral $\int x^4 e^x dx$.

Exercise 8: By using partial Fractions to find the following integral

$$\int \frac{-x^2 + 3x + 4}{x(x+2)^2} dx$$