CRDI Q BANK

Q: The curve shown in the Figure below is typical of a reaction carried out isothermally, it is typical of a gas-solid catalytic exothermic reaction carried out adiabatically.
(a) Assuming that you have a fluidized CSTR and a PBR containing equal weights of catalyst, how should they be arranged for this adiabatic reaction? Use the smallest amount of catalyst weight to achieve $\mathbf{8 0 \%}$ conversion of \boldsymbol{A}.
(b) What PBR weight is necessary to achieve $\mathbf{8 0 \%}$ conversion?

Additional information: $\boldsymbol{F}_{A 0}=2 \mathrm{~mol} / \mathrm{s}$.

Q: The initial reaction rate for the elementary reaction

$\mathbf{2 A}+\mathrm{B} \rightarrow \mathbf{4 C}$
was measured as a function of temperature when the concentration of \boldsymbol{A} was $\mathbf{2 M}$ and that of \boldsymbol{B} was 1.5M.
(a) What is the activation energy?
(b) What is the frequency factor?

$-r_{\mathrm{A}}\left(\mathrm{mol} / \mathrm{dm}^{3} \cdot s\right):$	0.002	0.046	0.72	8.33
$T(\mathrm{~K}):$	300	320	340	360

Q: Carbon disulfide is produced in a steady-flow reactor by following reactions,

$$
\begin{aligned}
& \mathrm{CH}_{4}+2 \mathrm{~S} \rightarrow \mathrm{CS}_{2}+2 \mathrm{H}_{2} \\
& \mathrm{H}_{2}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{~S}
\end{aligned}
$$

Methane is fed to the reactor at a rate of $90 \mathrm{~mol} / \mathrm{min}$ and vapor sulfur at a rate of $380 \mathrm{~mol} / \mathrm{min}$. The fraction of the methane converted in the reactor is 75%, and the hydrogen mole fraction in the product stream is 12%.
Determine:
a. The production rate of carbon disulfide.
b. The compositions of the outlet stream.

Q: A $50 \mathrm{~mol} / \mathrm{s}$ stream consisting of 90% ethane and 10% nitrogen is mixed with a $40 \mathrm{~mol} / \mathrm{s}$ air stream and fed into a catalytic reactor. The following reactions take place in the reactor:

$$
\begin{aligned}
2 \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{CH}_{3} \mathrm{CHO}+2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}
\end{aligned}
$$

The oxygen conversion is 80%, and the concentration of the ethanol in the product stream is three times that of the aldehyde and four times that of the acetic acid. Calculate: (a) The ethane conversion., and (b) the production rate of the ethanol.

Q: The ideal gas-phase decomposition reaction

$$
\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}
$$

is takes place in a batch reactor at constant \boldsymbol{P}, and \boldsymbol{T}. Initially, 10 mol of ethane (pure) are charged into the reactor. If the final volume of the reactor is 80% larger than the initial volume, calculate; -
(a) the conversion, (b) the reaction extent, and (c) the mole fraction of \mathbf{H}_{2} at the end of the operation.

