## **Chemical Reactor Design II**

### Lecture (1) : Importance of understanding multiple reactions in CRD.

## Chemical and Petrochemical Engineering Department 6<sup>th</sup> Semester Salahaddin University

Understanding multiple reactions is crucial in the field of chemical engineering and reactor design. Multiple reactions refer to situations where more than one chemical reaction occurs simultaneously within a system. This complexity introduces challenges and opportunities that significantly impact the design, optimization, and operation of chemical reactors.

Here are some key reasons highlighting the importance of understanding multiple reactions:

## **<u>1.Product Selectivity:</u>**

- Different reactions often lead to the formation of various products.
- Understanding the kinetics and thermodynamics of each reaction helps optimize conditions for desired product formation.
- Achieving high selectivity ensures efficient use of resources and minimizes waste.

### **2.Reaction Kinetics:**

- Each reaction in a multiple reaction system has its own kinetics.
- The rate of each reaction *influences the overall system behavior*.
- Accurate knowledge of reaction kinetics aids in predicting the conversion of reactants and *the evolution of product concentrations over time*.

## **<u>3.Energy Considerations:</u>**

- Multiple reactions can have different energy requirements.
- Balancing energy input and removal is essential for maintaining temperature control and preventing undesired side reactions.
- Understanding the heat generated or absorbed by each reaction is critical for reactor safety and efficiency.

## **<u>4.Optimization of Yield:</u>**

- Some reactions may compete for the same set of reactants, affecting the overall yield of desired products.
- Balancing reaction rates and concentrations is essential for optimizing the yield of the target product while minimizing the formation of by-products.

### **5.Reactor Design:**

- Different types of reactors are suitable for different types of reactions.
- Understanding the nature of multiple reactions helps in selecting an appropriate reactor design that maximizes efficiency and minimizes costs.

### **<u>6.Process Economics:</u>**

- The economic feasibility of a chemical process is influenced by the efficiency of the reactor system.
- Knowledge of multiple reactions allows for the design of costeffective processes with minimal energy consumption and raw material waste.

### **7.Environmental Impact:**

• Optimizing reactions to reduce by-products and waste is crucial for sustainable and environmentally friendly manufacturing.

### **<u>8.Process Control:</u>**

- Multiple reactions introduce additional variables that need to be controlled for stable operation.
- Understanding the interplay between reactions aids in developing effective control strategies for maintaining product quality and consistency.

In conclusion, a deep understanding of multiple reactions is essential for achieving optimal performance in chemical reactors. It not only enhances the efficiency of chemical processes but also contributes to sustainability, cost-effectiveness, and safety in the chemical industry.



Polymath<sup>™</sup> is an easy-to-use numerical computation package that

allows students and professionals to use personal computers to solve the following types of problems:



- Simultaneous Linear Algebraic Equations
- Simultaneous Nonlinear Algebraic Equations
- Simultaneous Ordinary Differential Equations



- Data Regressions (including the following)
  - Curve Fitting by Polynomials and Splines
  - Multiple Linear Regression with Statistics
  - Nonlinear Regression with Statistics

## Polymath Software

• Polymath<sup>™</sup> is unique in that the problems are entered just like their mathematical equations, and there is a minimal learning curve. Problem solutions are easily found with robust algorithms. This allows very convenient problem solving to be used in chemical reaction engineering and other areas of chemical engineering, leading to an enhanced educational experience for students.



The elementary gas phase reaction

 $3A+2B \xrightarrow{k_1} 3C+5D$ 

is carried out in a flow reactor operated isothermally at 427°C and 28.7 atmospheres. Pressure drop can be neglected. The entering volumetric flow rate is 10 dm<sup>3</sup>/s and the reaction rate constant ( $k_1$ ) is 200 dm<sup>12</sup>/mol<sup>4</sup>.s. The feed is equal molar in A and B.

*a)* Express the rate law and the concentration of each species

b) Calculate the required CSTR volume for 50% conversion.

Example-1-solution

d(cd) / d(t) = rd

- d(cc) / d(t) = rc
- d(cb) / d(t) = rb

d(ca) / d(t) = ra

rd = -(5/3)\*ra

rc = -ra

rb = 0.66667\*ra

 $ra = -k*(0.25*(1-X)/(1+0.5*X))^{3*}(0.25*(1-0.6667*X)/(1+0.5*X))^{2}$ 

X=(0.25-ca)/0.25

k=200

- cd(0) = 0
- cc(0) = 0
- cb(0) = 0.25
- ca(0) = 0.25
- t(0) = 0
- t(f) = 500

VCSTR=X\*2.5/(-ra)

| 🧐 POLYMATH 6.10 Professional Release - [Ordinary Differential Equations Solver]                                  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 📼 File Program Edit Format Problem Examples Window Help                                                          |  |  |  |  |  |  |  |  |  |
| D 📂 🗳 🔚   X 🖻 🛍 🖉   M L   🜌 🖾 🖾 📖 📾 🎘 !   🚟 💡                                                                    |  |  |  |  |  |  |  |  |  |
| d⋈ ×= ini- 🕦 📧 🔶 RKF45 💽 🔽 Iable 🔽 Graph 🔽 <u>R</u> eport                                                        |  |  |  |  |  |  |  |  |  |
| Differential Equations: 4 Auxiliary Equations: 7 🗸 Ready for solution                                            |  |  |  |  |  |  |  |  |  |
| #example 1 solution                                                                                              |  |  |  |  |  |  |  |  |  |
| $\frac{d(cd)}{d(cc)} = \frac{d(cd)}{d(t)} = \frac{d(cd)}{d(t)}$                                                  |  |  |  |  |  |  |  |  |  |
| $\frac{d(cb) / d(t) = rb}{d(ca) / d(t) = ra}$                                                                    |  |  |  |  |  |  |  |  |  |
| $rd = -(5/3)^* ra$                                                                                               |  |  |  |  |  |  |  |  |  |
| rb = 0.66667*ra                                                                                                  |  |  |  |  |  |  |  |  |  |
| $ra = -k^{*}(0.25^{*}(1-X)/(1+0.5^{*}X))^{3}(0.25^{*}(1-0.6667^{*}X)/(1+0.5^{*}X))^{2}$ $X = (0.25 - ca)/(0.25)$ |  |  |  |  |  |  |  |  |  |
| k=200                                                                                                            |  |  |  |  |  |  |  |  |  |
| $\begin{vmatrix} cd(0) = 0 \\ cc(0) = 0 \end{vmatrix}$                                                           |  |  |  |  |  |  |  |  |  |
| cb(0) = 0.25                                                                                                     |  |  |  |  |  |  |  |  |  |
| ca(0) = 0.25<br>t(0) = 0                                                                                         |  |  |  |  |  |  |  |  |  |
| t(f) = 500                                                                                                       |  |  |  |  |  |  |  |  |  |
| VUSIR=X"2.5/(-fa)                                                                                                |  |  |  |  |  |  |  |  |  |

POLYMATH 6.10 Professional Release - [Differential Equations Solution #12]

🍓 File Edit Window Help

#### D 📂 🕼 🔚 🛝 📭 🛍 🖉 🗰 🐍 🛛 🖾 🖾 🖾 📾 📖 🖬 🥕 🥕 🕴 🚟 🂡

#### POLYMATH Report

Ordinary Differential Equations

#### **Calculated values of DEQ variables**

|    | Variable | Initial value | Minimal value | Maximal value | Final value |
|----|----------|---------------|---------------|---------------|-------------|
| 1  | са       | 0.25          | 0.03981       | 0.25          | 0.03981     |
| 2  | cb       | 0.25          | 0.1098727     | 0.25          | 0.1098727   |
| 3  | сс       | 0             | 0             | 0.21019       | 0.21019     |
| 4  | cd       | 0             | 0             | 0.3503166     | 0.3503166   |
| 5  | k        | 200.          | 200.          | 200.          | 200.        |
| 6  | ra       | -0.1953125    | -0.1953125    | -2.635E-05    | -2.635E-05  |
| 7  | rb       | -0.130209     | -0.130209     | -1.756E-05    | -1.756E-05  |
| 8  | rc       | 0.1953125     | 2.635E-05     | 0.1953125     | 2.635E-05   |
| 9  | rd       | 0.3255208     | 4.391E-05     | 0.3255208     | 4.391E-05   |
| 10 | t        | 0             | 0             | 500.          | 500.        |
| 11 | VCSTR    | 0             | 0             | 7.978E+04     | 7.978E+04   |
| 12 | х        | 0             | 0             | 0.8407598     | 0.8407598   |

#### **Differential equations**

d(cd)/d(t) = rdd(cc)/d(t) = rcd(cb)/d(t) = rbd(ca)/d(t) = ra

#### Explicit equations

1 X = (0.25-ca)/0.25

2 k = 200

3 ra = -k\*(0.25\*(1-X)/(1+0.5\*X))^3\*(0.25\*(1-0.6667\*X)/(1+0.5\*X))^2



Chemical & Petrochemical ENG \_ Chem Reactor Design II\_6th Semester\_Mr.Serwan Ibrahem I File Program Edit Row Column Format Analysis Examples Window Help

#### D 🌶 🗲 🖬 | X 🖻 🖻 🖉 | 🗛 🐉 | 🜌 🖾 📖 | 📾 🔊 ! | 🚟 💡

| R001 | : C001 C01 | ×         | ~         |           |           |           |      |            |           |           |            |           | <b></b> | Regression Analysis                                                                  | Graph             |           |
|------|------------|-----------|-----------|-----------|-----------|-----------|------|------------|-----------|-----------|------------|-----------|---------|--------------------------------------------------------------------------------------|-------------------|-----------|
|      | t          | cd        | cc        | cb        | са        | ×         | k    | ra         | rd        | rc        | rb         | VCSTR     | <b></b> | 🗘 🗷 🔶 r                                                                              | Graph E F         | Residuals |
| 1    | 0          | 0         | 0         | 0.25      | 0.25      | 0         | 200. | -0.1953125 | 0.3255208 | 0.1953125 | -0.130209  | 0         | -       |                                                                                      |                   |           |
| 2    | 10.2143    | 0.2209472 | 0.1325683 | 0.1616207 | 0.1174317 | 0.5302733 | 200. | -0.0026102 | 0.0043503 | 0.0026102 | -0.0017401 | 507.8891  |         | <u> <u>         R</u>eport         <u>         I</u>         Store Mode         </u> | :                 |           |
| 3    | 17.40908   | 0.2439012 | 0.1463407 | 0.152439  | 0.1036593 | 0.5853628 | 200. | -0.0014341 | 0.0023901 | 0.0014341 | -0.000956  | 1020.471  |         | Linear & Polynomial Multipl                                                          | e linear 🕴 Nonlin | near      |
| 4    | 20.71334   | 0.2510473 | 0.1506284 | 0.1495806 | 0.0993716 | 0.6025136 | 200. | -0.0011769 | 0.0019614 | 0.0011769 | -0.0007846 | 1279.915  |         |                                                                                      |                   |           |
| 5    | 28.60062   | 0.2638552 | 0.1583131 | 0.1444574 | 0.0916869 | 0.6332525 | 200. | -0.000813  | 0.001355  | 0.000813  | -0.000542  | 1947.273  |         | Dependent Variable c                                                                 | 4                 | -         |
| 6    | 32.60062   | 0.2688775 | 0.1613265 | 0.1424484 | 0.0886735 | 0.6453061 | 200. | -0.000699  | 0.001165  | 0.000699  | -0.000466  | 2308.013  |         | Independent Voriable                                                                 |                   |           |
| 7    | 36.60062   | 0.2732331 | 0.1639398 | 0.1407062 | 0.0860602 | 0.6557594 | 200. | -0.0006113 | 0.0010188 | 0.0006113 | -0.0004075 | 2681.918  |         |                                                                                      |                   |           |
| 8    | 40.60062   | 0.2770684 | 0.166241  | 0.1391721 | 0.083759  | 0.664964  | 200. | -0.0005419 | 0.0009031 | 0.0005419 | -0.0003612 | 3067.944  |         | Polynomial Degree                                                                    | Linear            | ^         |
| 9    | 48.60062   | 0.2835656 | 0.1701394 | 0.1365732 | 0.0798606 | 0.6805574 | 200. | -0.0004393 | 0.0007321 | 0.0004393 | -0.0002929 | 3873.054  |         | 43                                                                                   |                   |           |
| 10   | 52.60062   | 0.286361  | 0.1718166 | 0.135455  | 0.0781834 | 0.6872664 | 200. | -0.0004004 | 0.0006674 | 0.0004004 | -0.000267  | 4290.797  |         | 4                                                                                    |                   |           |
| 11   | 56.60062   | 0.2889177 | 0.1733506 | 0.1344324 | 0.0766494 | 0.6934024 | 200. | -0.0003674 | 0.0006124 | 0.0003674 | -0.000245  | 4717.926  |         | 5                                                                                    |                   |           |
| 12   | 60.60062   | 0.2912704 | 0.1747622 | 0.1334913 | 0.0752378 | 0.6990489 | 200. | -0.0003391 | 0.0005651 | 0.0003391 | -0.0002261 | 5153.973  |         | 7                                                                                    |                   |           |
| 13   | 68.60062   | 0.2954704 | 0.1772822 | 0.1318112 | 0.0727178 | 0.709129  | 200. | -0.000293  | 0.0004883 | 0.000293  | -0.0001953 | 6051.212  |         | I Through origin [8                                                                  | }                 | <b>•</b>  |
| 14   | 72.60062   | 0.297359  | 0.1784154 | 0.1310558 | 0.0715846 | 0.7136616 | 200. | -0.000274  | 0.0004567 | 0.000274  | -0.0001827 | 6511.706  |         |                                                                                      |                   |           |
| 15   | 76.60062   | 0.2991284 | 0.179477  | 0.1303481 | 0.070523  | 0.717908  | 200. | -0.0002571 | 0.0004286 | 0.0002571 | -0.0001714 | 6979.708  |         | Polynomial                                                                           |                   |           |
| 16   | 80.60062   | 0.3007915 | 0.1804749 | 0.1296828 | 0.0695251 | 0.7218997 | 200. | -0.0002421 | 0.0004035 | 0.0002421 | -0.0001614 | 7454.946  |         | Integration                                                                          |                   |           |
| 17   | 88.60062   | 0.303842  | 0.1823052 | 0.1284626 | 0.0676948 | 0.7292207 | 200. | -0.0002164 | 0.0003606 | 0.0002164 | -0.0001442 | 8426.16   |         |                                                                                      |                   |           |
| 18   | 92.60062   | 0.3052469 | 0.1831481 | 0.1279006 | 0.0668519 | 0.7325925 | 200. | -0.0002053 | 0.0003421 | 0.0002053 | -0.0001369 | 8921.7    |         | 🗖 Polynomial                                                                         |                   |           |
| 19   | 96.60062   | 0.3065813 | 0.1839488 | 0.1273669 | 0.0660512 | 0.7357951 | 200. | -0.0001952 | 0.0003253 | 0.0001952 | -0.0001301 | 9423.598  |         | Derivative                                                                           |                   |           |
| 20   | 100.6006   | 0.3078514 | 0.1847109 | 0.1268588 | 0.0652891 | 0.7388435 | 200. | -0.000186  | 0.00031   | 0.000186  | -0.000124  | 9931.676  |         |                                                                                      |                   |           |
| 21   | 108.6006   | 0.3102199 | 0.186132  | 0.1259114 | 0.063868  | 0.7445278 | 200. | -0.0001697 | 0.0002829 | 0.0001697 | -0.0001132 | 1.097E+04 |         |                                                                                      |                   |           |
| 22   | 112.6006   | 0.3113273 | 0.1867964 | 0.1254685 | 0.0632036 | 0.7471854 | 200. | -0.0001626 | 0.0002709 | 0.0001626 | -0.0001084 | 1.149E+04 |         |                                                                                      |                   |           |
| 23   | 116.6006   | 0.3123885 | 0.1874331 | 0.125044  | 0.0625669 | 0.7497324 | 200. | -0.0001559 | 0.0002598 | 0.0001559 | -0.0001039 | 1.202E+04 |         |                                                                                      |                   |           |
| 24   | 120.6006   | 0.313407  | 0.1880442 | 0.1246366 | 0.0619558 | 0.7521768 | 200. | -0.0001497 | 0.0002495 | 0.0001497 | -9.982E-05 | 1.256E+04 |         |                                                                                      |                   |           |
| 25   | 128.6006   | 0.3153276 | 0.1891966 | 0.1238683 | 0.0608034 | 0.7567862 | 200. | -0.0001386 | 0.000231  | 0.0001386 | -9.241E-05 | 1.365E+04 |         |                                                                                      |                   |           |
| 26   | 132.6006   | 0.3162349 | 0.1897409 | 0.1235054 | 0.0602591 | 0.7589636 | 200. | -0.0001336 | 0.0002227 | 0.0001336 | -8.908E-05 | 1.42E+04  |         |                                                                                      |                   |           |
| 27   | 136.6006   | 0.3171098 | 0.1902659 | 0.1231554 | 0.0597341 | 0.7610635 | 200. | -0.0001289 | 0.0002149 | 0.0001289 | -8.595E-05 | 1.476E+04 |         |                                                                                      |                   |           |
| 28   | 140.6006   | 0.3179545 | 0.1907727 | 0.1228176 | 0.0592273 | 0.7630907 | 200. | -0.0001245 | 0.0002075 | 0.0001245 | -8.302E-05 | 1.532E+04 |         |                                                                                      |                   |           |
| 29   | 148.6006   | 0.3195602 | 0.1917361 | 0.1221753 | 0.0582639 | 0.7669444 | 200. | -0.0001165 | 0.0001942 | 0.0001165 | -7.766E-05 | 1.646E+04 |         | 1                                                                                    |                   |           |
| 30   | 152 6006   | 0.5505533 | 0 19219/7 | 0 1218696 | 0.0578053 | 0 7697797 | 200  | .0 0001128 | 0 0001 99 | 0 0001128 | .7 521E.05 | 1 70/F±0/ | -       |                                                                                      |                   |           |

 $\times$ 

\_ 8 ×

\_

D



The elementary reversible reaction:

 $2A \rightleftharpoons B$ 

is carried out isothermally and isobarically in a flow reactor where pure A is fed at a concentration of 4.0 mol/dm<sup>3</sup>.

What is the equilibrium conversion  $(X_e)$ , for a liquid-phase reaction and the equilibrium constant = 0.48 dm<sup>3</sup>/mol?





# End od 1<sup>st</sup> week –part 1 lecture