Q: The following complex gas-phase reactions $4A + 6B \rightarrow 5C + 6D, -r_{1NO} = k_{1B}C_AC_B^{1.5}$ $2B \rightarrow C + E, r_{2C} = k_{2C}C_B^2$ $C + 2E \rightarrow 2F, -r_{3E} = k_{3E}C_CC_E^2$ and take place isothermally in a PBR. The feed is equimolar in A and B with $F_{A0} = 10$ mol/min and the volumetric flow rate is 100 dm³/min. The catalyst weight is 100 kg, the pressure drop is $\alpha = 0.005$ kg⁻¹, and the total entering concentration is $C_{T0} = 0.2$ mol/dm³.volume). $k_{1B} = 100$, $k_{2C} = 1500$, and $k_{3E} = 350$. C and E are desired and other *products* are undesired. $\frac{dp}{dx} = -\frac{\alpha}{2p} \left(\frac{F_T}{F_{To}}\right)$ a. What is the optimum catalyst weight? b. What is the maximum overall yield?

c. Write the polymath code.

Q: Consider the following elementary and isothermal liquid-phase reactions:

$$\begin{aligned} A \rightleftharpoons 2X + D , k_{1A} = 4, & \text{K}_{\text{E1}} = 0.25 \\ A \rightleftharpoons B + U , & \text{k}_{2A} = 2.5, & \text{K}_{\text{E2}} = 1.2 \\ & 2D + B \longrightarrow E , & k_{3B} = 10 \end{aligned}$$

Take place in a batch reactor. C_{Ao}=0.1 mol/dm³

- (a) Estimate the optimum reaction time if B is a desired product and other products are undesired products.
- (b) Do you think adding 0.05 mol $/dm^3$ of both C_{Xo} and C_{Do} will affect the selectivity value and the required time of reaction (answer by comparing results before and after the change)
- All equilibrium and rate constants are estimated at mole, dm³, and hour units. Assume the final value time in polymath solution is 10 hours.

Note (how to answer)

- Write the Polymath solution-branch (a) (10Marks), and
- Write the required answers (30 Marks-10 for (a) and 20 for (b)).

Q: Two gas-phase reactions are occurring in a plug-flow reactor, which is operated isothermally at a temperature of 440°F and a pressure of 5 atm.

$$A \rightarrow B$$
, $-r_A = k_1 C_A$, $k_1 = 10 \text{ h}^{-1}$
 $C \rightarrow D + E$, $-r_C = k_2$, $k_2 = 0.03$ Ibmol ft⁻³. h^{-1}

The feed, which is equimolar in A and C, enters at a flow rate of 10 lbmol/h. What reactor volume is required for a 50% conversion of A to B? R=0.73 ft³·atm/°R·lbmol