This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Continuous infrared popping: Effect on key physicochemical attributes of popcorn

Journal:	ACS Food Science & Technology
Manuscript ID	fs-2022-001886
Manuscript Type:	Article
Date Submitted by the Author:	22-Jun-2022
Complete List of Authors:	Shavandi, Mahdi; Iranian Research Organization for Science and Technology Javanmard, Majid; Iranian Research Organization for Science and Technology (IROST), Food Technologies Bassiri, Alireza; Iranian Research Organization for Science and Technology

SCF	IOLARONE"	н
N	<i>lanuscripts</i>	

2		
3 4	1	Continuous infrared popping: Effect on key physicochemical
5		
6 7	2	attributes of popcorn
7 8		
9	3	
10		
11 12	4	Mahdi Shavandi ^a , Majid Javanmard ^{a*} and Alireza Bassiri ^a
13	5	^a Food Technologies Group, Department of chemical Engineering, Iranian Research Organization
14 15	5	Tobu Technologies Group, Department of chemical Engineering, Tranan Research Organization
15 16	6	for Science & Technology (IROST), Tehran-Iran.
17	7	* Corresponding author E-mail: javanmard@irost.ir
18 19		
20	8	Tel/Fax: +98-21-5741-6432
21	9	Abstract
22 23	10	The effect of continuous infrared (Co-IR) popping at different power (600, 700
24		
25	11	and, 800 watts (W) Co-IR power) and constant distance from sample (5 cm) on the
26 27	12	key physicochemical properties of popcorn (Zea Mays L. var. Everta) (popping
28 29	13	properties, energy consumption, morphology (SEM), sensory properties, and color)
30	14	was investigated. According to the popping properties results, optimum treatment
31 32	15	for Co-IR popping of popcorn was 700 W Co-IR power. Color were significantly
33 34	16	changed ($P < 0.05$) during Co-IR popping. L*, a*, b*, ΔE , hue, and chroma values
35	17	of Co-IR popped popcorn (700 W Co-IR power) were 71.40, -2.73, 15.44,
36 37	18	33.13±1.92, -1.40±0.29, and 15.68±1.07, respectively. The minimal energy usage
38 39	19	was attained at 0.013 kWh at 800 W Co-IR power. In SEM analysis, with increasing
40 41	20	the IR lamp power, the cavities size was increased (the cavities number per unit
42	21	area decreased). The largest increase in the popcorn cavities size was determined
43 44	22	at 800W Co-IR power. The highest consumer acceptance of Co-IR popped corns
45 46	23	was obtained 700 W Co-IR power. This is the first study on Co-IR expansion
47 48	24	technology for popcorn popping, and the findings show that the IR expansion
48 49	25	method is very efficient in the popcorn popping process.
50 51	26	
52	27	Keywords: Cereal grains, Continuous infrared, Infrared expansion, Maize,
53 54 55	28	Popping.

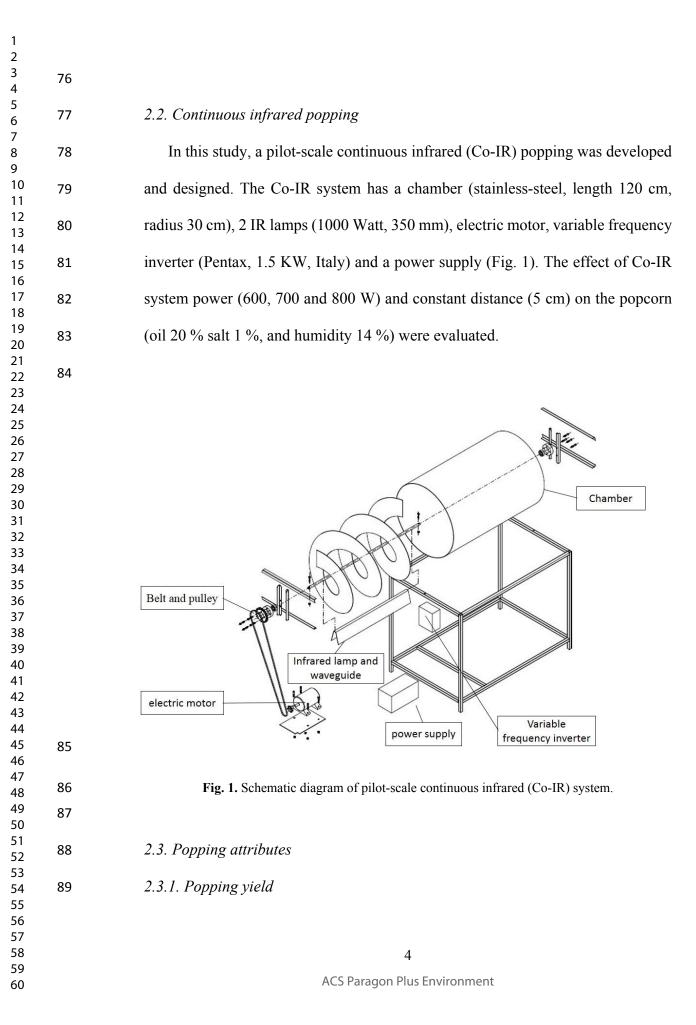
1. Introduction

Popcorn as one of the foremost popular snacks worldwide is predestined especially for human consumption. Popcorn after expansion has great nutritional and functional attributes.¹ Expansion attributes are linked to the acceptance of sensory and consumption properties. Modification of desirable functional and sensory characteristics of foods through processing results in increased demand from consumer.² These attributes are the most important features of popcorn.³

Popcorn (flower) occurs through pericarpial breakage when grain pressure reach 930.79 kPa and the internal temperature reach 177°C.^{4,5} In this situation, the popcorn starch expands and forms the popcorn flower or expanded popcorn.^{6, 7, 8} Heating of popcorn leads to a state of agitation in the water found in starch granules and has increased the inner pressure of the grain.^{4, 5} Grain moisture content has a direct impact on the pressure within the grain during the popping. The high humidity reduces the rigidity of pericarp and rate of expansion, and low moisture content leads to the failure to achieve the internal vapor pressure needed for grain expansion.⁹

Brown rice in iron pan containing sand¹⁰, white popcorn in microwave heating⁷, popped rice in atmospheric radio-frequency plasma¹¹, sorghum in fluidized bed¹², and popcorn in aluminum popcorn popper⁶, have been used for puffing and popping of cereal. In a study, effect of butter (1 % to 13 %) vegetable oil (1 % to 13 %), sodium chloride (0.5 % to 2.5 %), and sodium bicarbonate (0.0 % to 0.8 %), on popcorn properties were evaluated.¹³ The effect of expansion method, moisture content (8 % to 16 %) and with and without oil of white popcorn on the sensory

Page 3 of 22


ACS Food Science & Technology

2		
3 4	53	properties were evaluated. It was reported that 11.39 $\%$ without oil and 10.21 $\%$
5 6	with oil were the optimum humidity for expansion. ⁷	
7 8	55	Infrared (IR) irradiation is eco-friendly and very energy efficient compared to
9 10 11	56	traditional heating. In addition, IR ability is characterized by high heat transfer,
12 13	57	heating homogeneity, low processing (heating) time, improved product quality, low
14 15	58	energy consumption, and food safety. ¹⁴ The IR irradiation was utilized in much
16 17	59	food processing unit operations, such as drying, heating, roasting, microbiological
18 19 20	60	inactivation, baking, cooking, peeling, and etc. ^{14, 15, 16} IR between ultraviolet (UV)
20 21 22	61	and microwave wavelength is an electromagnetic spectrum part. The wavelength
23 24	62	of IR is 0.76 μm to 1000 μm. ¹⁷
25 26	63	The main goal of this study was to investigate how the continuous infrared (Co-
27 28 29	64	IR) popping process (Co-IR power (600, 700, and 800 W) in the constant distance
30 31	65	(5 cm) effect on key physicochemical attributes of popcorn (popping properties,
32 33	66	color, morphology (SEM), sensory evaluation, and energy consumption).
34 35	67	
36 37 38	68	2. Materials and methods
38 39	08	2. Materials and methods
40 41	69	2.1. Sample preparation
42 43	70	The corn (Zea Mays L. var. Everta) which harvested in Karaj (Alborz Province,
44 45	71	Iran) crop year 2019-2020 was used. The corn was cleaned, sifted, and stored in

polyethylene bags. The corn humidity was measured through oven method (140 °C,

3 h).¹⁸ The corn's had an inner humidity of 16.25%.

The corn's moisture and oil content were adjusted to 14 % and 20 %, respectively.

Page 5 of 22

1 2		
2 3 4	90	The un-popped samples were chosen after the popping process, and the total
5 6	91	popcorn weights was recorded. The primary corn weight and the end popcorn
7 8 9	92	weight were used to calculate the popping yield, which was given as a percentage
9 10 11	93	Eq. (1):
12 13	94	
14 15 16	95	Popping yield (%) = $\frac{(W_{fpg} + W_{spg})}{W}$ (1)
17 18 19	96	
20 21	97	Where, W_{upg} = Unpopped grains weight, W_{spg} = Semi-popped grains weight,
22 23	98	W_{fpg} = Fully popped grains weight, and W = Grains after popping total weight =
24 25	99	$W_{fpg} + W_{spg} + W_{upg}$. ¹⁹
26 27 28	100	
29 30	101	2.3.2. Volume expansion
31 32	102	The volume expansion was measured in a 500 mL cylinder. Eq. (2) was used to
33 34 35	103	get the volume expansion ratio:
36 37	104	
38 39	105	Volume expansion ratio = $\frac{V_f}{V_i}$ (2)
40 41 42	106	
43 44	107	Where, V_i = Initial unpopped grains volume and V_f = Final popped grains
45 46 47	108	volume. ¹⁹
47 48 49	109	
50 51	110	2.3.3. Popping percentage
52 53	111	Eq. (3) was used to compute the popping percentages;
54 55 56	112	
57 58		5
59 60		ACS Paragon Plus Environment

1			
2 3 4 5	113	Popping percentage (%) = $\frac{N_p}{N} \times 100$	(3)
6 7	114		
8 9	115	Where, N= total number of initial grains and N_p = number of grains popped	ed. ²⁰
10 11 12	116	2.3.4. Popping commencement	
13 14	117	Using a stopwatch, the time of popping initiation from the start point	: was
15 16	118	recorded as the popping commencement. ²⁰	
17 18	119		
19 20 21	120	2.3.5. Bulk density	
22 23	121	In a 500 mL cylinder, the bulk density of popped corns was calculated u	using
24 25	122	Eq. $(4)^{10}$:	
26 27 28	123		
29 30 31	124	Bulk density = $\frac{\text{mass (mg)}}{\text{volume (mL)}}$	(4)
32 33	125		
34 35	126	2.3.6. Expansion residue	
36 37 38	127	The expansion residue (%) were evaluated using the Eq. (5):	
39 40	128		
41 42 43	129	Expansion residue (%) = $\frac{N_{up}}{N} \times 100$	(5)
44 45	130		
46 47	131	Where, N_{up} = Number of grains that did not expand and N = Total numb	er of
48 49 50	132	initial grains. ⁷	
51 52	133		
53 54 55	134	2.4. Color change	
56 57			
58 59		6 ACS Paragon Plus Environment	
60		ACS ratagon rus chvitonment	

ACS Food Science & Technology

2			
3 4	135	The popcorn color was evaluated using image J software. Each sample images	
5 6	136	were scanned and evaluated. The L* (lightness), a* (redness), and b* (yellowness)	I
7 8	137	values were calculated. ²¹ L*, a*, and b* were used to compute the total color	•
9 10 11	138	difference (Δ E) Eq. (6), chroma Eq. (7) and hue Eq. (8).	
12 13	139		
14 15	140	$\Delta E = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2} \tag{6}$	1
16 17	141	·	
18 19			
20 21	142	$C = \sqrt{a^2 + b^2} \tag{7}$	1
22 23	143		
24 25	144	$H = \tan^{-1} \left(b/a \right) \tag{8}$	I
26 27	145		
28 29 30	146	2.5. Energy consumption	
30 31 32	147	Eq. (9) was used to calculate the threshold energy produced by Co-IR	_
33 34	148	processing in the period between the start of process and the first popping. ^{20, 21}	
35 36	149		
37 38			
39 40	150	$E_{Co-IR} = Co - IR \times t \tag{9}$	
40 41 42	151		
42 43 44	152	Where t is the processing time (h) and Co-IR is the power consumption of Co-	
45 46	153	IR (kW).	
47 48	154		
49 50	155	2.6. Scanning electron microscopy	
51 52	156	Scanning electron microscopy (SEM, Tescan Mira) was used to examine the	
53 54	150	Seaming electron meroscopy (SEM, Tescan Mina) was used to examine the	
55 56	157	influence of IR on the morphology of popcorn at high vacuum (10-4 Pa) and at 15	
57 58		7	
59		7 ACS Paragon Plus Environment	
60			

kV. Without cutting the popcorn, they were examined as whole grains. To get highresolution pictures, samples were placed on aluminum stubs and a conductive layer
of 8 nm gold was sprayed onto the samples.

2.7. Sensory evaluation

Measurement of the sensory evaluation of popcorns was performed using the modified method of Simic et al. (2018).²² In this study, 34 trained panelists investigated the sensory properties of popcorns according to the most important sensory attributes including odor, taste, color, firmness, and general acceptance. The rate of samples from 1 the most satisfaction to 5 the lowest satisfaction were numbered.

2.8. Statistical analyses

The results were reported as mean of three independent replicates and the standard deviation. SAS software version 9.3 (SAS Institute Inc.) was used to analyze all of the data using Duncan post hoc at P < 0.05.

3. Results and discussion

3.1. Popping attributes

The effect of Co-IR system on the popping attributes of popcorn was evaluated. The results of popping percentage, popping yield, popping commencement, expansion residue, bulk density, and volume expansion are shown in table 1. The analysis of variance showed a significant effect (P < 0.05) for popping percentage,

popping yield, popping commencement, expansion residue, bulk density, and volume expansion.

- **Table 1.** Popping properties of expanded popcorn through continuous infrared (Co-IR).

2 3 4 5	Power (W)	Popping yield (%)	Popping percentage (%)	Volume expansion	Popping commencement (Min)	Expansion residue (%)	Bulk density (g/cm ³)
5 7	800	88.42±1.67B	92.59±1.33A	13.66±1.31B	1.00±0.08C	7.41±1.45C	0.05±0.01A
8	700	89.28±1.33A	91.36±1.28B	14.15±1.33A	2.00±0.10B	8.64±1.11B	0.05±0.01A
5	600	76.84±2.00C	81.01±1.14C	12.00±1.04C	2.50±0.09A	18.99±1.33A	0.06±0.02A

Values are given as Mean \pm SD. Different letters (a-c) within a columns indicate significant difference (P < 0.05).

The highest popping yield (89.28 %) of Co-IR popped popcorn at 700 W Co-IR power was obtained. The highest popping percentage (92.59 %) of Co-IR expanded popcorn was obtained at 800 W Co-IR power. The highest volume expansion (14.15±1.33) of Co-IR expanded popcorn at 700 W Co-IR power was evaluated. The lowest popping commencement (1.08±0.08 min) of Co-IR expanded popcorn at 800 W Co-IR power were evaluated. The lowest expansion residue (7.41±1.45 %) of Co-IR expanded popcorn at 800 W Co-IR power was obtained. The lowest bulk density (0.05±0.01 g/cm3) of Co-IR expanded popcorn at 700 W Co-IR power and 800 W Co-IR power were obtained.

According to the results, the optimum treatment for Co-IR popping of popcorn was 700 W Co-IR power.

In pilot batch IR popping system, the optimum treatment for IR expansion of popcorn was 10 cm distance and 550 W IR power.²³

ACS Food Science & Technology

1						
2 3 4	200	The expansion v	olume can be rela	ited to the method	d of expansion, hu	umidity,
5 6	201	grain's physical chara	acteristic (dimensi	ions and density),	and genotype. ^{24, 2}	⁵ It was
7 8 9	202	reported that the max	kimum expansion	volume happened	l in the range of h	umidity
10 11	203	from 15.5 % to 11.0	%. ^{24, 25, 26} The c	ereal bulk density	after expansion s	severely
12 13	204	decreased. ²⁷				
14 15 16	205					
10 17 18	206	3.2. Color changes				
19 20	207	Color is one of t	he significant par	ameters in the fo	od industry and a	ffecting
21 22 23	208	consumers' approval	. Acceptability, p	reference, percep	tion, saltiness, swe	eetness,
23 24 25	209	and flavor are all infl	uenced by color. A	a result, color p	reservation during	thermal
26 27	210	processing is critical.	21, 28			
28 29 30	211	Table 2 indicates	ΔE , hue, and chro	ma values and Fig	. 2 shows color ind	lex (L*,
31 32	212	a*, and b*) of Co-IR	popped and cont	rol corn. Color in	dex, ΔE , chroma, a	and hue
33 34	213	were significantly ch	anged in Co-IR po	opped popcorn (P-	<0.05).	
35 36 37	214					
38 39	215	Table 2. The	effect of IR on ΔE , c	chroma, and hue in e	expanded popcorn.	
40		Power (W)	ΔE	Chroma	Hue	
41 42 43		Control (raw corn grains)		46.61±1.67a	1.45±0.48a	
44 45						
46		800	29.11±2.48c	18.22±0.99b	-1.52±0.15c	
47 48		700	33.13±1.92a	15.68±1.07d	-1.40±0.29b	
40 49	216	$\frac{600}{\text{Values are given as Mean} \pm \text{SD.}}$	30.34±2.24b	$17.96\pm1.11c$	-1.41±0.27b	prence $(P < 0.05)$
50		values are given as weat $\pm 5D$.	Different letters (a-a) within a columns in		(1 <0.05).
51 52	217					
53						
54						
55 56						
57						
58 59				10		
59 60			ACS Paragon	Plus Environment		

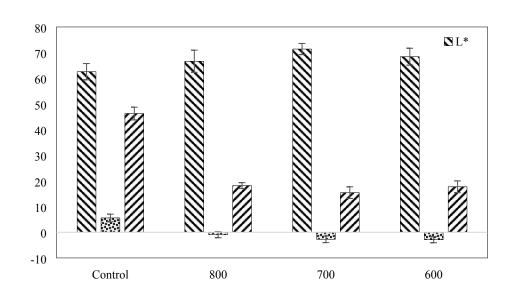
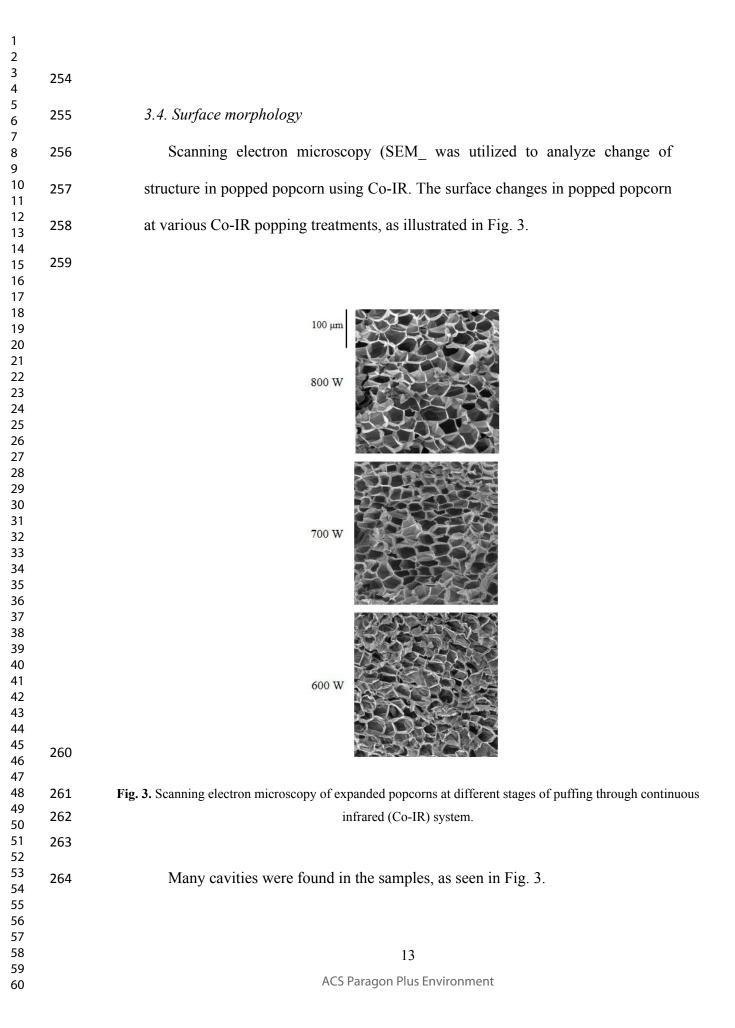


Fig. 2. Effect of continuous infrared (Co-IR) system on color index in expanded popcorns.

L*, a*, b*, ΔE, hue, and chroma values of Co-IR popped popcorn (700 W Co-IR power) were 71.40, -2.73, 15.44, 33.13±1.92, -1.40±0.29, and 15.68±1.07, respectively.


The color of expanded popcorn has something to do with the expansion peroperties.²⁹

It was reported that in pilot batch IR popping system, L*, a*, b*, hue, and chroma values of IR popped corns (10 cm distance and 550 W IR power) were 76.297, -2.566, 9.502, -1.34, and 10.36, respectively.²³

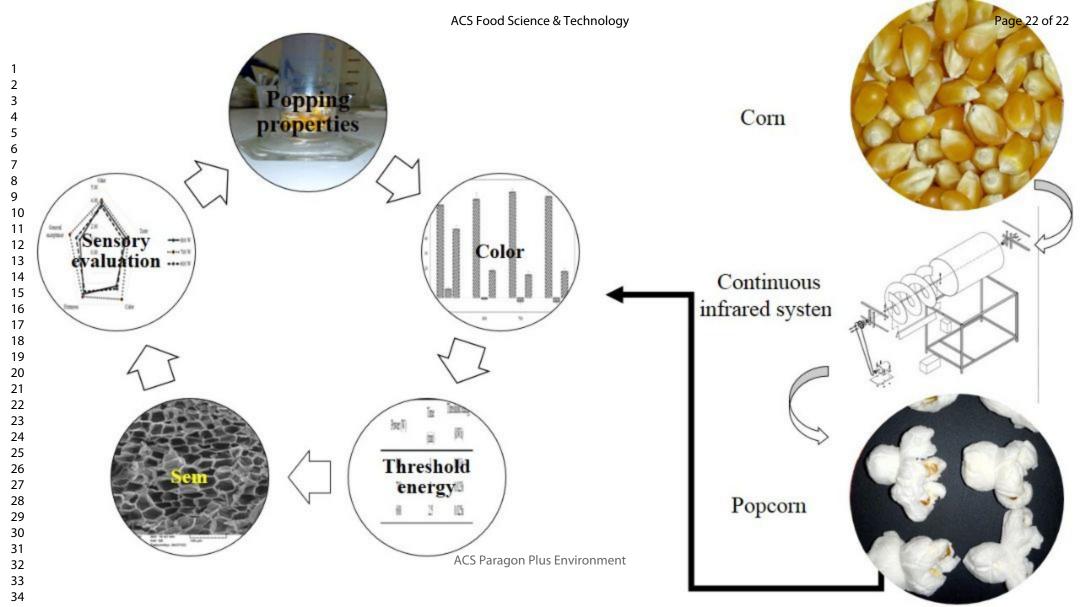

The effects of feed humidity and temperature of barrel zone on whole grain in extruded whole grain products were explored. The color look is improved by the reduced moisture levels and greater temperature.³⁰ The impact of the iron pan puffing method on the brown rice color was studied. The puffing procedure was

1							
2							
3 4	233	shown to have a considerable in	mpact on the bro	own rice color. ¹⁰ The color of			
5							
6	234	cardamom seeds may be changed	by IR irradiation	, according to reports. ²¹			
7							
8	235						
9							
10	236	3.3. Energy consumption					
11							
12	237	Table 3 shows the threshold en	nergy for Co-IR tr	eatments on expanded popcorn.			
13 14			0,				
15	238	The minimal energy usage was at	tained at 0.013 kV	Wh at 800 W Co-IR power. The			
16				I			
17	239	effect of several Co-IR treatment	s on expanded po	pcorn energy consumption was			
18			F -	F			
19	240	substantial ($P < 0.05$). The energy	usage was reduce	ed by lowering the Co-IR power			
20	2.10			a of towering the contraction			
21	241	and treatment time.					
22 23	271	und troutmont time.					
23	242						
25	272						
26	243	Table 3. The effect of different IR tr	eatments on the thres	hold energy in expanded popcorn			
27	2.13			nota energy in expanded popeern.			
28							
29		Dowor (W)	Time	Threshold energy			
30		Power (W)	(min)	(kWh)			
31 32		800	1	0.013c			
33							
34		700	2	0.023b			
35		600	2.5	0.025a			
36	244	Values are given as Mean \pm SD. Different lette	rs (a-c) within a colu	mns indicate significant difference ($P < 0.05$).			
37	245						
38							
39 40	246	In nilot batch IR popping syst	em the minimum	energy consumption in 0.0159			
40	210	in prior outen ite popping syst		energy consumption in 0.0129			
42	247	kWh at 10 cm distance and 450 W	V IR nower was m	peasured 23			
43	277	k vvii ut 10 cm distance and 120 v	in power was n	lousurou.			
44	248	The R corous in cardamom s	eeds was studied	using IR power (100, 200, and			
45	240	The D. cereas in cardamoni s	ceus was staared	using itt power (100, 200, and			
46	249	300 W), sample distance (5, 10,	and 15 cm) and	process time $(0-11 \text{ min})$ The			
47	249	500 W), sample distance (5, 10,	and 15 cm), and	process time (0–11 mm). The			
48 49	250	anargy consumption was alaimed	to have dropped	due to a reduction in treatment			
49 50	250	energy consumption was claimed	to have dropped				
51	254	norman and tracture and dramation with	iala maga a anna a ta i	to our findings ²¹ Davi and Dag			
52	251	power and treatment duration, wh	ich was connected	to our mindings. ²¹ Devi and Das			
53	252	(2010) f $(1 + 1)$	ialmaar	thread ald an arrest in such a			
54	252	(2018) found that when grain th	ickness rose, the	inresnoia energy increased as			
55		11 20					
56	253	well. ²⁰					
57 58			10				
58 50			12				

ACS Paragon Plus Environment

1 2		
3 4	265	By increasing the IR lamp power, the cavities size was increased (the cavities
5 6	266	number per unit area decreased). At 800W Co-IR power, the largest increase in the
7 8 9	267	cavities size of popcorn was seen.
10 11	268	The effectiveness of the expansion process in popcorn is demonstrated by an
12 13	269	increase in the cavities size, which results in an increase in the samples volume.
14 15 16	270	The results of the Co-IR popping attributes in table 1 correspond to the results
10 17 18	271	of SEM analysis (surface morphology) in Fig. 3. As a result, the size of cavities has
19 20	272	increase in tandem with the increase in volume expansion, popping yield, and
21 22	273	popping percentage.
23 24 25	274	In our previous study in pilot batch IR popping system, the similar results was
26 27	275	evaluated. ²³
28 29	276	The texture of popcorn is influenced by its expansion properties. ²⁹ Higher
30 31 32	277	expansion volumes may be linked to the softness and palatability of popcorn. ³¹ Gun
33 34	278	puffing's effect on common wheat, emmer wheat, buckwheat, rice, barley, and rye
35 36	279	was evaluated in a study. Puffing generates considerable changes in physical
37 38 39	280	attributes and the structure of materials, according to SEM analysis, which was
40 41	281	connected to our findings. ²⁷
42 43	282	
44 45	283	3.5. Sensory evaluation
46 47 48	284	The effect of Co-IR popping on sensory evaluation of popcorns shown in Fig.
49 50	285	4. The effect of Co-IR popping on sensory evaluation such as odor, taste, color,
51 52 53 54 55	286	firmness, and general acceptance in popcorns was significant (P < 0.05). The
55		

1 2		
3 4	303	Co-IR power. The effectiveness of the expansion process in popcorn is
5 6 7	304	demonstrated by an increase in the cavities size, which results in an increase in the
7 8 9	305	samples volume. The cavities size has increase in tandem with the increase in
10 11	306	volume expansion, popping yield, and popping percentage. The effect of Co-IR
12 13	307	popping on sensory evaluation such as odor, taste, color, firmness, and general
14 15 16	308	acceptance in popcorns was significant ($P < 0.05$). According to the findings, Co-
16 17 18	309	IR popping is a high-efficiency popping process approach. Finally, it's possible that
19 20	310	Co-IR popping technology might be researched for cereal grains enlargement.
21 22	311	
23 24 25	312	Acknowledgments
26 27	313	The authors acknowledge the Iranian Research Organization for Science &
28 29	314	Technology (IROST) for facilitating this research and supporting this project.
30 31 32	315	
32 33 34	316	Conflict of Interest
35 36	317	All authors have no conflict of interest to report.
37 38	318	
39 40 41	319	References
42 43	320	(1) Park, D., Allen, K. G., Stermitz, F. R., & Maga, J. A. Chemical composition
44 45	321	and physical characteristics of unpopped popcorn hybrids. Journal of Food
46 47 48	322	<i>Composition and Analysis</i> , 2000 , <i>13</i> (6), 921-934.
49 50	323	(2) Dharmaraj, U., Ravi, R., & Malleshi, N. G. Physicochemical and textural
51 52	324	characteristics of expanded finger millet. International journal of food
53 54 55	325	properties, 2012, 15(2), 336-349.
56 57		
58 59		16
60		ACS Paragon Plus Environment


1 2		
2 3 4	326	(3) Arnhold, E., Silva, R. G., & Viana, J. M. S. Seleção de linhagens S5 de milho-
5 6	327	pipoca com base em desempenho e divergência genética. Acta Scientiarum.
7 8 9	328	Agronomy, 2010, 32(2), 279-283.
10 11	329	(4) Senhorinho, H. J. C., Coan, M. M. D., Marino, T. P., Kuki, M. C., Pinto, R. J.
12 13	330	B., Scapim, C. A., & Holland, J. B. Genomic-Wide Association Study of
14 15 16	331	Popping Expansion in Tropical Popcorn and Field Corn Germplasm. Crop
17 18	332	Science, 2019, 59(5), 2007-2019.
19 20	333	(5) Soylu, S., & Tekkanat, A. Interactions amongst kernel properties and expansion
21 22 23	334	volume in various popcorn genotypes. Journal of Food Engineering, 2007,
23 24 25	335	<i>80</i> (1), 336-341.
26 27	336	(6) Hoseney, R. C., Zeleznak, K., & Abdelrahman, A. Mechanism of popcorn
28 29	337	popping. <i>Journal of cereal Science</i> , 1983 , 1(1), 43-52.
30 31 32	338	(7) Cañizares, L. D. C. C., da Silva Timm, N., Ramos, A. H., Neutzling, H. P.,
33 34	339	Ferreira, C. D., & de Oliveira, M. Effects of moisture content and expansion
35 36	340	method on the technological and sensory properties of white
37 38	341	popcorn. International Journal of Gastronomy and Food Science, 2020, 22,
39 40 41	342	100282.
42 43	343	(8) Silva, T. R. D. C., Amaral Júnior, A. T. D., Gonçalves, L. S. A., Candido, L. S.,
44 45	344	Vittorazzi, C., & Scapim, C. A. Agronomic performance of popcorn
46 47 48	345	genotypes in Northern and Northwestern Rio de Janeiro State. Acta
49 50	346	Scientiarum. Agronomy, 2013, 35(1), 57-63.
51 52	347	(9) Van der Sman, R. G. M., & Bows, J. R. Critical factors in microwave expansion
53 54 55	348	of starchy snacks. Journal of Food Engineering, 2017, 211, 69-84.
55 56 57		
58		17
59 60		ACS Paragon Plus Environment

3 4	349	(10) Mir, S. A., Bosco, S. J. D., Shah, M. A., & Mir, M. M. Effect of puffing on
5 6	350	physical and antioxidant properties of brown rice. Food Chemistry, 2016,
7 8 9	351	<i>191</i> , 139-146.
9 10 11	352	(11) Puangjinda, K., Matan, N., & Nisoa, M. Effects atmospheric radio-frequency
12 13	353	plasma treatment on popping characteristics of popped rice and its
14 15	354	nutritional evaluation. Innovative Food Science & Emerging
16 17 18	355	Technologies, 2016 , <i>35</i> , 119-124.
19 20	356	(12) Llopart, E. E., & Drago, S. R. Physicochemical properties of sorghum and
21 22	357	technological aptitude for popping. Nutritional changes after
23 24 25	358	popping. LWT-Food Science and Technology, 2016, 71, 316-322.
26 27	359	(13) Singh, J., & Singh, N. Effects of different ingredients and microwave power
28 29	360	on popping characteristics of popcorn. Journal of food engineering, 1999,
30 31 32	361	42(3), 161-165.
33 34	362	(14) Aboud, S. A., Altemimi, A. B., RS Al-HiIphy, A., Yi-Chen, L., & Cacciola,
35 36	363	F. A comprehensive review on infrared heating applications in food
37 38 39	364	processing. Molecules, 2019, 24(22), 4125.
40 41	365	(15) Shavandi, M., Sadeghi, A., & Sarani, A. Modeling the effect of different
42 43	366	infrared treatment on B. cereus in cardamom seeds and using genetic
44 45 46	367	algorithm-artificial neural network. Journal of Food and Bioprocess
40 47 48	368	Engineering, 2020 , <i>3</i> (1), 29-34.
49 50	369	(16) Shavandi, M, Taghdir, M, Abbaszadeh, S, Sepandi, M, Parastouei, K.
51 52 53 54 55	370	Modeling the inactivation of <i>Bacillus cereus</i> by infrared radiation in
56 57 58		18

2		
3 4	371	paprika powder (Capsicum annuum). Journal of Food Safety, 2020,
5 6 7	372	e12797s.
7 8 9	373	(17) Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., & Demirci, A.
10 11	374	Infrared Heating in Food Processing: An Overview. Comprehensive
12 13	375	Reviews in Food Science and Food Safety, 2008, 7(1), 2-13.
14 15 16	376	(18) ASAE (2000). ASAE standards 2000. St. Joseph, MI: American Society of
10 17 18	377	Agricultural Engineers.
19 20	378	(19) Mishra, G., Joshi, D. C., Mohapatra, D., & Babu, V. B. Varietal influence on
21 22	379	the microwave popping characteristics of sorghum. Journal of cereal
23 24 25	380	science, 2015 , 65, 19-24.
26 27	381	(20) Devi, M. K., & Das, S. K. Microwave popping characteristics of paddy as
28 29 30 31 32	382	affected by sample placement and geometry and process
	383	optimization. Journal of food engineering, 2018, 221, 45-53.
33 34	384	(21) Shavandi, M., Kashaninejad, M., Sadeghi, A., Jafari, S. M., & Hasani, M.
35 36	385	Decontamination of Bacillus cereus in cardamom (Elettaria cardamomum)
37 38 30	386	seeds by infrared radiation and modeling of microbial inactivation through
39 40 41	387	experimental models. Journal of Food Safety, 2020, 40(1), e12730.
42 43	388	(22) Simic, M., Zilic, S., Simuruna, O., Filipcev, B., Skrobot, D., & Vancetovic, J.
44 45	389	Effects of anthocyanin-rich popping maize flour on the phenolic profile and
46 47 48	390	the antioxidant capacity of mix-bread and its physical and sensory
49 50	391	properties. Polish Journal of Food and Nutrition Sciences, 2018, 68(4).
51 52		
53		
54 55		
55 56		
57 58		10
58 59		19
60		ACS Paragon Plus Environment

3 4	392	(23) Shavandi, M., Javanmard, M., & Basiri, A. Novel popping through infrared:
5 6	393	Effect on some physicochemical properties of popcorn (Zea Mays L. var.
7 8 9	394	Everta). LWT, 2022, 155, 112955.
10 11	395	(24) Anne Allred-Coyle, T., Ramses B. Toma, Wendy Reiboldt, Mani Thakur.
12 13	396	Effects of moisture content, hybrid variety, kernel size, and microwave
14 15 16	397	wattage on the expansion volume of microwave popcorn. International
17 18	398	<i>journal of food sciences and nutrition</i> , 2000 , <i>51</i> (5), 389-394.
19 20	399	(25) Gökmen, S. Effects of moisture content and popping method on popping
21 22 23	400	characteristics of popcorn. Journal of Food Engineering, 2004, 65(3), 357-
23 24 25	401	362.
26 27	402	(26) Shimoni, E., Dirks, E. M., & Labuza, T. P. The relation between final popped
28 29 30	403	volume of popcorn and thermal-physical parameters. LWT-Food Science
31 32	404	and Technology, 2002 , <i>35</i> (1), 93-98.
33 34	405	(27) Mariotti, M., Alamprese, C., Pagani, M. A., & Lucisano, M. Effect of puffing
35 36 37	406	on ultrastructure and physical characteristics of cereal grains and
37 38 39	407	flours. Journal of Cereal Science, 2006, 43(1), 47-56.
40 41	408	(28) Clydesdale, F. M. Color as a factor in food choice. Critical reviews in food
42 43	409	science and nutrition, 1993 , 33(1), 83-101.
44 45 46	410	(29) Ceylan, M., & Karababa, E. Comparison of sensory properties of popcorn from
47 48	411	various types and sizes of kernel. Journal of the Science of Food and
49 50 51 52 53 54 55	412	<i>Agriculture</i> , 2002 , <i>82</i> (1), 127-133.
56 57 58		20
59		20
60		ACS Paragon Plus Environment

1		
2 3 4	413	(30) Oliveira, L. C., Schmiele, M., & Steel, C. J. Development of whole grain wheat
5 6	414	flour extruded cereal and process impacts on color, expansion, and dry and
7 8 9	415	bowl-life texture. LWT, 2017, 75, 261-270.
10 11	416	(31) Dofing, S. M., Thomas-Compton, M. A., & Buck, J. S. Genotype× Popping
12 13 14	417	Method Interaction for Expansion Volume in Popcorn. Crop science, 1990,
14 15 16	418	<i>30</i> (1), 62-65.
17 18		
19 20		
21 22		
23 24		
25 26		
27		
28 29		
30 31		
32 33		
34		
35 36		
37 38		
39 40		
41 42		
43		
44 45		
46 47		
48 49		
50		
51 52		
53 54		
55 56		
57 58		21
59		21 ACS Paragon Plus Environment
60		ACS Falayon Flus Environment

