
2- Left Recursion 
A grammar is left recursion if it has a non terminal A, such that there is a 

derivation A αA Fer some string α. Top-down parsing methods cannot 

handle  left  recursion grammars, so  a  transformation that  eliminates left 

recursion is needed. 
In the following example, we show how that left recursion pair of production 

A αA|β could be replaced by the non left recursional productions: 

A αA|β 
A βA' 

A' αA'| λ 
 

 

Example: Consider the following grammar for arithmetic expressions. 

E E+T |T 

T T*F|F 

F (E) | id 
 

Eliminating the immediate left recursion (productions of the form A Aα 

to the production for E and then for T, we obtain: 
 

 

E TE' 

E' +T E'| λ 

T FT' 

T' *FT' | λ 

F (E) | id 
 

 

No matter how many A productions  there are, we can eliminate immediate 

left recursion from them by the following technique. First we group the A 

production as 

A Aα1| Aα2| …| Aαn| β1| β2| … βn 
 
 
 

where no βi begins with an A. then, we replace the A -productions by 

A β1A'| β2A'| …| βnA' 

A α1A'| α2A'| …| αnA' | λ 
 

 

This produce eliminates all immediate left recursion from A and A' 

production.  but it does not eliminate left recursion involving derivation of 

two or more steps. 



S Aa | b 

A Ac | Sd | λ 

The non terminal S is left recursion because S Aa Sda, but is not 

immediately left recursion. 
 
 
 

3- Left Factoring 
left factoring is a grammar transformation that is useful for producing a 

grammar suitable for predictive parsing. The basic idea is that when it is not 

clear which of two alternative productions to use to expand a nonterminal A, 

we may be able to rewrite the A-productions to defer the decision until we 

have seen enough of the input to make the right choice. 

For example, if we have the two productions 
 

 

Stmt                   if Expr then Stmt else Stmt 

| if Expr then Stmt 
 

 

on seeing the input token if, we cannot immediately tell which production to 

choose to expand stmt. In general, if A               α β1| α β2 are two A 

productions, and the input begins with a non-empty string derived from α 

,we do not know whether to expand A to α β1 or to α β2. However, we may 

defer the decision by expanding A to αA', then after seeing the input derived 

from α, we expand A' to β1 or to β2. that is, left factored, the original 

production become: 
 

A  αA' 

A' β1| β2 



1  

 

Top down parser 
 

 
 

In  this  section  there  are  basic  ideas  behind  top-down  parsing  and  show  how 

constructs an efficient non- backtracking form of top-down parser called a predictive 

parser. 

 

Top down parsing can be viewed as attempt to find a left most derivation for an input 

string. Equivalently, it can be viewed as an attempt to construct a parse tree for the 

input starting from the root and creating the nodes of the parse tree in preorder. 

 

The following grammar requires backtracking: 
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We now try the second alternative for A to obtain the tree: 
 

 

 
 

 

 
 

 

Predictive Parsing Method 
 
 

In many cases, by carefully writing a grammar eliminating left recursion from it, 

and left factoring the resulting grammar, we can obtain a grammar that can be parsed 

by a non backtracking predictive parser. 

 

We can build a predictive parser by maintaining a stack. The key problem during 

predictive  parser  is  that  of  determining  the  production  to  be  applied  for  a 

nonterminal. The nonrecursive parser looks up the production to be applied in a 

parsing table. 

 

A table-driven predictive parser has an input buffer, a stack, a parsing table, and 

an output stream. The input buffer contains the string to be parsed, followed by $, (a 

symbol used as a right endmarker to indicate the end of the input string). The stack 

contains a  sequence of grammar symbols with $  on the bottom,( indicating the 

bottom of the stack). Initially, the stack contains the start symbol of the grammar on 
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the top of $. The parsing table is a two-dimensional array M[A,a], where A is a 

nonterminal, and a is a terminal or the symbol $. 

 

 
 

 

The  parser  is  controlled  by  a  program  that  behaves  as  follows.  The  program 

considers X, the symbol on top of the stack, and a, the current input symbol. These 

two  symbols  determine  the  action  of  the  parser.  There  are  three  possibilities. 

 
 

 

If M[X,a]= error, the parser calls an error recovery routine. 
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Algorithm nonrecusive predictive parser 
 
 

 
 
 
 
 

 

Example: 
 

 

Parse the input id * id + id in the grammar: 
 

 

E → TE' 
 
 

E' →  +TE' │ ε 
 
 

T → FT' 
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T' → *FT' │ ε 
 
 

F → (E)  │ id 
 
 

The parse table M for the grammar: 
 
 

 
 
 

The moves made by predictive parser on input id+id*id 
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FIRST and FOLLOW: 
 
 

The construction of a predictive parser is aided by two functions 

associated with a grammar G. These functions, FIRST and FOLLOW, 

allow us to fill in the entries of a predictive parsing table for G, whenever 

possible. 

 

Define the FIRST(α) to be the set of terminals that begin the strings 

derived from α, and the FOLLOW(A) for  nonterminal A, to be the set of  terminals 

a that can appear immediately to the right of A in some sentential form. 

 

To compute FIRST(x) for all grammar symbols x, apply the following rules until no 

more terminals or ε   can be added to any first set. 

 

1- If x is terminal, then FIRST(x) is {x}. 
 

 

2- If X→ a ; is a production, then add a to FIRST(X) and 
 

 

If X → ε ; is a production, then add ε to FIRST(X). 
 
 

3- If  X is nonterminal and X→Y1,Y2…Yi ; is a production, then add FIRST(Y1) to 
 

FIRST(X). 
 

4- a- for (i = 1; if Yi can derive epsilon ε; i++) 

b- add First(Yi+1) to First(X) 

If Y1 does not derive ε , then we add nothing more to FIRST(X), but if 
 

Y1→ ε , then we add FIRST(Y2) and so on . 
 
 

First function example 
 
 

1- FIRST (terminal) = {terminal } 

S → aSb │ba │ ε 
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FIRST (a) ={a} 

FIRST (b) ={b} 

2- FIRST(non terminal) = FIRST (first char) 

FIRST (S)= {a,b, ε  } 

To compute FOLLOW(A) for all non terminals A, is the set of terminals that can 
 

appear immediately to the right of A in some sentential form S → aAxB... To 

compute Follow, apply these rules to all nonterminals in the grammar: 

 

1- Place $ in FOLLOW(S) , where S is the start symbol and $ is the input right 

end marker. 

 

FOLLOW(START) = {$} 
 

 

2- If there is a production X→ α Aβ , then everything in FIRST(β) except for ε 
 
 

is placed in FOLLOW(A). 
 

 

i.e. FOLLOW(A) = FIRST(β) 
 

 

3- If there is a production X→ α A, or a production X→ α Aβ , where FIRST(β) 

Contains ε (β → ε  ), then everything in FOLLOW(X) is in FOLLOW(A). 

i.e. : FOLLOW(A)= FOLLOW(X) 

Follow function examples: 

Example 1: 

S → aSb │X 

X → cXb │b 

X → bXZ 
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Z → n 
 

 

First   Follow 
 

 

S      a , c , b                                  $ , b 
 

 

X     c , b                                       b , n , $ 

Z      n                                           b , n , $ 

Example 2: 

S → bXY 
 

 

X → b | c 
 

 

Y → b | ε 
 

 

First   Follow 
 

 

S b $ 
 

 

X b , c b , $ 

Y  b , ε $ 

Example 3: 

S → ABb │bc 
 

 

A → ε │abAB 

B → bc │cBS 

First   Follow 
 

 

S b , a , c $ , b , c , a 
 

 

A ε , a b , c 
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B b , c b , c , a 
 

 

Example 4: 
 
 

X → ABC │ nX 
 

 

A → bA │ bb │ ε 
 

 

B → bA │CA 
 

 

C → ccC │CA │ cc 
 

 

First   Follow 
 

 

X      n , b , c                                    $ 
 

 

A b , ε b , c , $ 

B  b , c  c 

C      c                                           b , $ 
 

 

H.W: 
 
 

S → bSX | Y 

X → XC | bb 

Y → b | bY 

C → ccC | CX | cc 
 

 

Note: there is a left recursion problem here trying to solve this Problem and find 

the first and follow for this grammar. 

 

S → bSX | Y 
 

 

X → bbX’                         X’ → CX’| ε 
 

 

Y → b | bY                       C → ccC | CX | cc 
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First   Follow 
 

 

S b $ , b 

 

X 

 

b 

 

$ , b , c 

 

X’ 

 

c , ε 

 

$ , b , c 

 

Y 

 

b 

 

$ , b 

 

C 

 

c 

 

$ , b , c 

 
 
 
 
 

Construction of predictive parsing tables: 
 
 

The following algorithm can be used to construct a predictive parsing 

table for a grammar G. The idea behind the algorithm is the following : 

Suppose A→ α is a production with a in FIRST(α). Then the parser will expand 

A by α when the current input symbol is a. The only complication occurs when 

α→   . In this case, we should again expand A by α if the current input symbol is 

in FOLLOW(A). 

 

Algorithm construction of predictive parsing table: 
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Example: 
 

 

E→ E+T │ T 

T → T*F │ F 

F → (E) │id 

Parse the input id * id + id by using predictive parsing: 
 

 

1- we must solve the left recursion and left factoring if it founded in the grammar 
 

 

E → TE' 
 
 

E' → +TE' │ ε 
 
 

T → FT' 
 
 

T' → *FT' │ ε 
 
 

F → (E) │ id 
 
 

2- we must find the first and follow to the grammar: 
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First   Follow 
 

 

E ( , id $ , ) 
 

 

T ( , id + , ) , id 
 

 

E’ + , ε $ , ) 
 

 

T’ * , ε + , ( , id 
 

 

F ( , id + , * , ( , id 
 

 
 
 
 
 

 
 

 

3- We must find or construct now the predictive parsing table 
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Since FIRST(TE’) = FIRST(T) = {(,id}, production E→TE’ causes M[E,( ] and 
 

M[E,id] to acquire the entry E→TE’. 
 

Production E’→+TE’ causes m[E’,+] to acquire E’→+TE’. Production 
 

E’→ causes M[E’,)] and M[E’,$] to acquire E’→ since FOLLOW(E’) = 
 

{ ),$}. So the parsing table produced by the previous algorithm 
 
 

 

 
 

LL(1) grammars: 
 

The previous algorithm can be applied to any grammar G to produce a parsing 

table  M.  For  some  grammars, M  may  have  some  entries  that  are  multiply 

defined. If G is left recursive or ambiguous, then M will have at least one 

multiply-defined entry. 

Example: 
 

 
 

FIRST(S) = { i, a}  FOLLOW(S) = { $, e } 

FIRST(S’) = { e, ε} FOLLOW(S’) = { $, e } 

FIRST(E) = { b }  FOLLOW(E) = { t } 

So the parsing table for our grammar is: 



14  

 

 
 
 
 
 

The  entry  for  M[S’,e]  contains  both       S’→  eS     and       S’→  ε,  since 

FOLLOW(S’)  ={e,  $}.  The  grammar  is  ambiguous  and  the  ambiguity  is 

manifested by a choice in what production to use when an e (else) is seen. We can 

resolve the ambiguity if we choose S’→ eS. Note that the choice S’→   ε  would 

prevent e from ever being put on the stack or removed from the input, and is 

therefore surely wrong. 

 

A grammar whose parsing table has no multiply-defined entries is said to be 

LL(1). The first “L” in LL(1) indicates the reading direction (left-to-right), the 

second “L” indicates the derivation order (left), and the “1” indicates that there is 

a one-symbol or lookahead at each step to make parsing action decisions. 

 

Error Detection and Reporting 
 
 

An error is detected during predictive parsing when the terminal on top of the stack 

does not match the next input symbol or when nonterminal A is on top of the stack, a 

is the next input symbol, and the parsing table entry M[A,a] is empty. 

 

Error recovery is based on the idea of skipping symbols on the input until a token in 

selected set of synchronizing tokens appears. The sets should be chosen so that the 

parser recovers quickly from errors that are likely to occur in practice. 
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We  can  place  all  symbols  in  FOLLOW(A)  into  the  synchronizing  set  for 

nonterminal A. If we skip tokens until an element of FOLLOW(A) is seen and pop A 

from the stack, it is likely that parsing can continue. 

 

Example: 
 

 

Using FOLLOW symbols as synchronizing tokens works reasonably well when 

expressions are parsed according to the grammar: 

 

 
 

 

The  parsing  table  for   this  grammar  is   repeated  with  synchronizing  tokens 
 

 
 

 

If the parser looks up entry M[A,a] and finds that it is blank, then the input 

symbol a is skipped. If the entry is synchronize, then the nonterminal on top of 

the stack is popped in an attempt to resume parsing. 
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Bottom – Up Parsing 
 

 

Bottom up parsers start from the sequence of terminal symbols and work 

their way back up to the start symbol by repeatedly replacing   grammar 

rules' right hand sides by the corresponding non-terminal. This is the reverse 

of the derivation process, and is called "reduction". 

 

Example: consider the grammar 
 

 

 
 

 

The sentence abbcde can be reduced to S by the following steps: 
 

 

 
 

 

Definition: a handle is a substring that 
 

1- matches a right hand side of a production rule in the grammar and 

2- Whose reduction to the nonterminal on the left hand side of that 

grammar rule is a step along the reverse of a rightmost derivation. 
 

There  is  a  general  style  of  bottom-up  syntax  analysis,  known  as  shift 

reduces parsing. 

 

An easy to implement form of this parsing, called operator precedence 

parsing. 



 

 

 
 

A much more general method of shift reduce parsing called LR parsing , 

used in a number of automatic parsing generators. 

 

Shift reduces parsing attempts to construct a parse tree for an input string 

beginning at the leaves (bottom) and working up towards the root (the top). 

 

Shift Reduce Parsing Method 
 

 

There are two problems that must be solved if we are to parse by handle 

pruning. The first is to determine the handel, and the second is to determine 

what production to choose in case there is more than one production with 

that substring on the right side. A convenient way to implement a shift 

reduce parser is to use stack to hold grammar symbols and an input buffer to 

hold the string (W) to be parsed. Use $ to mark the bottom of the stack and 

also the right end of the input. Initially the stack is empty and the string (W) 

is on the input, as follows: 

 

Stack  Input 
 

 

$ W $ 
 

 

The parser operates by shifting zero or more input symbol onto the stack 

until a handle β is on top of the stack. The parser then reduces β to the left 

side of the appropriate production. The parser repeat this cycle until it has 

detected an error or until the stack contains the start symbol and the input is 

empty. 

 

Stack  Input 
 

 

$  S $ 



 

 

 
 

After entering this configuration the parser halts and announces successful 

completion of parsing. 

 
At each step, the parser performs one of the following actions. 

 

1- Shift one symbol from the input onto the parse stack 

2- Reduce one handle on the top of the parse stack. The symbols from 

the right hand side of a grammar rule are popped of the stack, and the 

nonterminal symbol is pushed on the stack in their place. 

3- Accept is the operation performed when the start symbol is alone on 
the parse stack and the input is empty. 

4- Error actions occur when no successful parse is possible. 
 

Example 1: parse the input id +id *id  for this grammar 
 

 

E → E+E 

E → E*E 

E → (E) 

E → id 
 

 

 



 

 

 
 

Example 2: parse the input id +* id  for the same grammar 
 
 
 
 
 

Stack Input Action 

$ id1 + * id2 $ Shift 

$ id1 + * id2 $ Reduce by E → id 

$ E+ * id2 $ Shift 

$ E+* id2 $ Shift 

$ E +* id $ Shift 

$ E +*E $ Reduce by E→ id 

$ E +*E $ Not Accept 

 
 
 

H.W. : For this grammar 
 

 

E → E+T | T T 

→ T*F | F F → 

id |  (E) 

Parse the input   id * id + id 
 


