

References:

Compiler

1. Principle of compiler design

Alfred V. Aho & Jeffrey D. Ullman

2. Basics of compiler Design
Torben Egidius Mogensen

3. Compilers : principles, techniques, and tools

Alfred V. Aho & Jeffrey D. Ullman

Programming Languages
Hierarchy of Programming Languages based on increasing machine

independence includes the following:
1- Machine – level languages.

2- Assembly languages.
3- High – level or user oriented languages.

4- Problem - oriented language.

1- Machine level language: is the lowest form of computer. Each instruction

in program is represented by numeric code, and numerical addresses are

used throughout the program to refer to memory location in the computers

memory.

2- Assembly language: is essentially symbolic version of machine level

language, each operation code is given a symbolic code such ADD for

addition and MULT for multiplication.

3- A high level language such as Pascal, C.

4- A problem oriented language provides for the expression of problems in

specific application or problem area .examples of such as languages are SQL

for database retrieval application problem oriented language.

Translator

A translator is program that takes as input a program written in a given

programming language (the source program) and produce as output program

in another language (the object or target program). As an important part of

this translation process, the compiler reports to its user the presence of errors

in the source program.

If the source language being translated is assembly language, and the object

program is machine language, the translator is called Assembler.

Fig (1)

A translator, which transforms a high level language such as C in to a

particular computers machine or assembly language, called Compiler.

Another kind of translator called an Interpreter process an internal form of

the source program and data at the same time. That is interpretation of the

internal source from occurs at run time and an object program is generated

Fig (2) which illustrate the interpretation process.

Data

source program Interpreter Result

Fig (2)

Compiler

Is a program (translator) that reads a program written in one language, (the

source language) and translates into an equivalent program in another
language (the target language).

Fig (3)

The time at which the conversion of the source program to an object

program occurs is called (compile time) the object program is executed at

(run time).

Fig (4) illustrate the compilation process Note that the program and data are

processed at different times, compile time and run time respectively.

Data

Source

Program
Compiler Object

Program
Execution Results

Compile time Run time

Fig (4) Compilation process

The Analysis - Synthesis model of compilation

There are two parts to compilation: analysis and synthesis. The analysis part

breaks up the source program into constituent pieces and creates an

intermediate representation of the source program. The synthesis part

constructs the desired target program from the intermediate representation.

During analysis, the operations implied by the source program are

determined and recorded in a hierarchical structure called a tree. Often, a

special kind of tree called asyntax tree is used, in which each node

represents an operation and the children of a node represent the arguments of

the operation. For example, a syntax tree for an assignment statement is

shown below

Compiler structure :
A compiler operates in phases, each of which transforms the source program

from one representation to another. A typical decomposition of a compiler is
shown in fig (5).

Source program

Fig (5) Phases of a Compiler

Compiler structure:
1- lexical analysis

The lexical analyzer is the first stage of a compiler. Its main task is to read

the input characters and produce as output a sequence of tokens that the

parser uses for syntax analysis.

2- syntax analysis (parsing)

The syntax analysis (or parsing) is the process of determining if a string of

tokens can be generated by grammar. Every programming language has

rules that prescribe the syntactic structure of well-formed programs.

Syntax Analyzer takes an out of lexical analyzer and produces a large tree

3- Semantic analysis

The semantic analysis phase checks the source program for semantics errors

and gathers type information for the subsequent code-generation phase. It

uses the hierarchical structure determined by the syntax-analysis phase to

identify the operators and operands of expressions and statements.

Semantic analyzer takes the output of syntax analyzer and produces another

tree.

4- Intermediate code generation

Generate an explicit intermediate representation of the source program. This

representation should have two important properties, it should be easy to

produce and easy to translate into the target program.

5- Code Optimization

Attempts to improve the intermediate code so that faster running machine

code will result.

6- code generation

Generates a target code consisting normally of machine code or an assemble

code. Memory locations are selected for each of the variables used by the

program. Then intermediate instructions are each translated in to a sequence

of machine instructions that perform the same task.

- Symbol table management :
Portion of the compiler keeps tracks of the name used by the program and

records essential information about each, such as type (integer, real, etc.).

The data structure used to record this information is called symbolic table.

-Error handler:
Is called when an error in the source program is detected. It must warn the

programmer by issuing a diagnostic, and adjust the information being passed

from phase to phase so that each phase can produced.

Types of errors
The syntax and semantic phases usually handle a large fraction of errors

detected by compiler.

1. Lexical error: The lexical phase can detect errors where the characters

remaining in the input do not form any token of the language . few errors are

discernible at the lexical level alone ,because a lexical analyzer has a very

localized view of the source program. Example : If the string fi is

encountered in a C program for the first time in context:
fi (a== f(x)….
A lexical analyzer cannot tell whether fi is a misspelling of the keyword if or

an undeclared function name. since fi is a valid identifier, the lexical

analyzer must return the token for an identifier and let some other phase of

the compiler handle any error.

2- syntax error: The syntax phase can detect Errors where the token stream

violates the structure rules (syntax) of the language.

3- semantic error: During semantic analysis the compiler tries to detect

constructs that have the right syntactic structure but no meaning to the

operation involved, e.g., if we try to add two identifiers, one of which is the

name of an array, and the other the name of a procedure.

4- runtime error.

Error Detection and Reporting

Each phase can encounter errors after detecting an error, a phase must some

how deal with that error, so the compilation can proceed, allowing further

error in the source program to be detected. A compiler that stops when it

finds the first error is not as helpful as it could be.

Passes:

In an implementation of a compiler, portions of one or more phases are
combined into a module called a pass. A pass reads the source program or

the output of the previous pass, makes the transformations specified by its

phases and writes output into an intermediate file, which may then be read

by subsequent pass.

Lexical Analyzer
The lexical analyzer is the first phase of compiler. The main task of lexical

Analyzer is to read the input characters and produce a sequence of tokens

such as names, keywords, punctuation marks etc.. for syntax analyzer. This

interaction, summarized in fig.6, is commonly implemented by making the

lexical analyzer be a subroutine of the parser. Up on receiving a "get next

token" command from the parser, the lexical analyzer reads input characters

until it can identify the next token.

Fig. (6) Interaction of lexical analyzer with parser

Preliminary scanning :

Since the lexical analyzer is the part of compiler that reads the source text; it

may also perform certain secondary tasks at the user interface. One such task

is stripping out from the source program comments and white space in the

form of blank, tab, and new line characters. Another is correlating error

messages from the compiler with the source program. For example, the

lexical analyzer may keep track of the number of new line characters seen,

so that a line number can be associated with an error message.

Some times, lexical analyzers are divided into a cascade of two phases, the

first called "scanning" and the second "lexical analysis". The scanner is
responsible for doing simple tasks, while the lexical analyzer proper does the

more complex operations. For example, a FORTRAN compiler might use a

scanner to eliminate blanks from the input.

Tokens, Patterns, Lexemes
In general, there is a set of strings in the input for which the same token is

produced as output. This set of strings is described by a rule called a pattern

associated with the token. The pattern is said to match each string in the set.

A lexeme is a sequence of characters in the source program that is matched

by the pattern for a token.
Example: Const pi = 3.1416
The sub string pi is a lexeme for the token “identifier”

Fig (7) Examples of tokens

Token
A lexical token is a sequence of characters that can be treated as a unit in the

grammar of the programming languages. In most programming language ,

the following constructs are treated as tokens: keywords, operators,

identifiers, constants, literal strings (any characters between " and "), and

punctuations symbols such as parentheses, commas, and semicolons.
The lexical analyzer returns to parser a representation for the token it has

found. This representation is:

• an integer code if there is a simple construct such as a left

parenthesis, comma or colon .

• or a pair consisting of an integer code and a pointer to a table if the

token is more complex element such as an identifier or constant .

This integer code gives the token type. The pointer points to the value of the

token. For example we may treat "operator" as a token and let the second

component of the pair indicate whenever the operator found is +, *, and so
on.

Symbol Table
A symbol table is a table with two fields. A name field and an information

field. This table is generally used to store information about various source

language constructs. The information is collected by the analysis phase of
the compiler and used by the synthesis phase to generate the target code.

Any subsequent call lookup("begin") returns the token begin, so begin

cannot be used as an identifier.

We required several capabilities of the symbol table we need to be able to:

1- Determine if a given name is in the table, the symbol table routines are

concerned with saving and retrieving tokens.
insert(s,t) : this function is to add a new name to the table

Lookup(s) : returns index of the entry for string s, or 0 if s is not found.

2- Access the information associated with a given name, and add new

information for a given name.
3- Delete a name or group of names from the tables.

For example consider tokens begin , we can initialize the symbol-table using

the function: insert("begin",1)

Input buffer
Lexical analyzer scans the characters of the source program one at a time to

discover tokens. It is desirable for the lexical analyzer to input from buffer.

One pointer marks the beginning of the token being discovered. A look

ahead pointer scans ahead of the beginning pointer, until a token is

discovered.

beginning pointer

A simple approach to the design of lexical analysis
One way to begin the design of any program is to describe the behavior of

the program by a flowchart.

Remembering previous character by the position flowchart is a valuable tool,

so that a specialized kind of flowchart for lexical analyzer, called transition
diagram, has evolved.

In transition diagram, the boxes of the flowchart are drawn as circle and

called states. The states are connected by arrows called edge. The labels on

the various edges leaving a state indicate the input characters that can appear

after that state.

To turn a collection of transition diagrams into a program, we construct a

segment of code for each state. The first step to be done in the code for any

state is to obtain the next character from the input buffer. For this purpose

we use a function GETCHAR, which returns the next character, advancing

the look ahead pointer at each call. The next step is to determine which edge,

if any out of the state is labeled by a character, or class of characters that

includes the character just read. If no such edge is found, and the state is not

one which indicates that a token has been found (indicated by a double

circle), we have failed to find this token. The look ahead pointer must be

retracted to where the beginning pointer is, and another token must be search

for using another token diagram. If all transition diagrams have been tried

without success, a lexical error has been detected and an error correction

routine must be called.

State 0 : C = GETCHAR ()

if LETTER(C) then goto state1

else FAIL()
State1 : C= GETCHAR ()

if LETTER(C) or DIGIT(C) then goto state1

else if DELIMITER(C) then goto state2

else FAIL ()

State2: RETRACT()
return(id,INSTALL())

LETTER(C) is a procedure which return true if and only if C is a letter.

DIGIT(C) is a procedure which return true if and only if C is one of the

digits 0,1,…,9.
DELIMITER(C) is a procedure which return true whenever C is character

that could follow an identifier. The delimiter may be: blank, arithmetic or

logical operator, left parenthesis, equals sign, comma,…

State2 indicates that an identifier has been found.
Since the delimiter is not part of the identifier, we must retract the look

ahead pointer one character, for which we use a procedure RETRAC. We

must install the newly found identifier in the symbol table if it is not already

there , using the procedure INSTALL, In state2 we return to the parser a pair

consisting of integer code for an identifier, which we denoted by id, and a

value that is a pointer to the symbolic table returned by INSTALL.

A more efficient program can be constructed from a single transition

diagram than from a collection of diagrams, since there is no need to

backtrack and rescan using a second transition diagram.

 w

·-r --
@)1-i.C,l>-..C 1)-----;

--
,..... .u· = -:;(t-

-
a

 -
.,)

--

;--• ® . ---·"'.'"'

identifier:

not

letter

letter or digit A)
start>@--;; >) return(6,\NSTALL()

tetter or tgtt

Constant:

""' !
>
':
®
: '\ •.•.• "{

®
) "" ' •

return(7,1NSTALL())

relops:

.....
et•• < - jft' < A..

... -)-...;lllllo@---....,!;,_.,..'W."

 .at-

_. .A.

.,(LO

- Specifkation ofTokens

An alphabet or a character class is a finite set of symbols.Typical examples of
symbols arletters and charactrs.

Patterns

Thset of strings is described by a mle called a pattem associat cl with the token.

Regular expressions are an imp01tant notation for specifying pattems. For example,

the pattem forthPacal identifir token, id, is: id --+ l ttr (lett r Idigit)*'.

Strings

A string over some alphabet is a finite sequence of symbol taken from that alphabet.

For xample, banana ia sequ nce of six symbols (i.e.,string of l ngth six) tak n
from ASCII computr alphabet.

The empty string denotE'd by e, is a special string with zero symbols (i e., string
length is 0).

If x and y are two strings, then the concatenation of x andy, written 'f0', is the string
fonued by appending y to x.
For example, If x =dog andy= house, then xy =doghouse.

For mpty string, E, we have Sf = ES = S.

String exponentiation concatenates a string with itself a given number of times:

S
2
= SS or S.S

S
3

= SSS or S.S.S

S
4

= SSSS or S.S.S.S and so on

By definition S
0

is an empty string, , and S` = S. For example, if x =ba and na then

xy
2

= banana.

Languages

A language is a set of strings over some fixed alphabet. The language may contain a

finite or an infinite number of strings.

Let L and M be two languages where L = {dog, ba, na} and M = {house, ba} then

• Union: LUM = {dog, ba, na, house}

• Concatenation: LM = {doghouse, dogba, bahouse, baba, nahouse, naba}

• Exponentiation: L
2

= LL

• By definition: L
0

={ } and L` = L

The kleene closure of language L, denoted by L*, is "zero or more Concatenation of"

L.

L* = L
0

U L` U L
2

U L
3

. . . U L
n
. . .

For example, If L = {a, b}, then

L* = { , a, b, aa, ab, ba, bb, aaa, aba, baa, . . . }

The positive closure of Language L, denoted by L
+
, is "one or more Concatenation

of" L.

L
+

= L` U L
2

U L
3

. . . U L
n

 . . .

For example, If L = {a, b}, then

L
+

= {a, b, aa, ba, bb, aaa, aba, . . . }

Regular Definitions

Regular expressions is a useful notation suitable for describing tokens . A regular

definition gives names to certain regular expressions and uses those names in other

regular expressions.

Example1 :

keyword = BEGIN|END|IF|THEN|ELSE

Identifier = letter (letter|digit)*

constant = digit+

relop = <|<=|=|<>|>|>=

example2: Here is a regular definition for the set of Pascal identifiers that is define as

the set of strings of letter and digits beginning with a letters.

letter → A | B | . . . | Z | a | b | . . . | z

digit → 0 | 1 | 2 | . . . | 9

id → letter (letter | digit)*

The regular expression id is the pattern for the Pascal identifier token and defines

letter and digit.

Where letter is a regular expression for the set of all upper-case and lower- case

letters in the alphabet and digit is the regular for the set of all decimal digits.

Example3: The pattern for the Pascal unsigned token can be specified as follows:

digit → 0 | 1 | 2 | . . . | 9

digits → digit digit*

Optimal-fraction → . digits | ε

Optimal-exponent → (E (+ | - |) digits) | ε

num → digits optimal-fraction

optimal-exponent

This regular definition says that

• An optimal-fraction is either a decimal point followed by one or more digits or

it is missing (i.e., an empty string).

• An optimal-exponent is either an empty string or it is the letter E followed by

an ' optimal + or - sign, followed by one or more digits.

Finite automata

A recognizer for a language is a program that takes a string x as an input and answers

"yes" if x is a sentence of the language and "no" otherwise.

One can compile any regular expression into a recognizer by constructing a

generalized transition diagram called a finite automation.

Nondeterministic Finite Automata (NFA)

A nondeterministic finite automation is a mathematical model consists of

1. a set of states S;

2. a set of input symbol, ∑, called the input symbols alphabet.

3. a transition function move that maps state-symbol pairs to sets of states.

4. a state so called the initial or the start state.

5. a set of states F called the accepting or final state.

An NFA can be described by a transition graph (labeled graph) where the nodes are

states and the edges shows the transition function.

The labeled on each edge is either a symbol in the set of alphabet, ∑, or denoting

empty string.

Following figure shows an NFA that recognizes the language: (a | b)* a bb.

This automation is nondeterministic because when it is in state-0 and the input

symbol is a, it can either go to state-1 or stay in state-0.

The transition is

The advantage of transition table is that it provides fast access to the transitions of

states and the disadvantage is that it can take up a lot of space.

The following diagram shows the move made in accepting the input strings aabb :

In general, more than one sequence of moves can lead to an accepting state. If at least

one such move ended up in a final state

The language defined by an NFA is the set of input strings that particular NFA

accepts.

Following figure shows an NFA that recognize aa* | bb*.

String aaa is accepted by moving through states 0,1,2,2 and 2

Deterministic Finite Automata (DFA)

A deterministic finite automation is a special case of a non-deterministic finite

automation (NFA) in which

1. no state has an -transition

2. for each state s and input symbol a, there is at most one edge labeled a leaving

s.

A DFA has at most one transition from each state on any input. It means that each

entry in the transition table is a single state (as oppose to set of states in NFA).

it is very easy to determine whether a DFA accepts an input string, since there is at

most one path from the start state labeled by that string.

Algorithm for Simulating a DFA

INPUT:

• string x

• a DFA with start state, so . . .
• a set of accepting state's F.

OUTPUT:

• The answer 'yes' if D accepts x; 'no' otherwise.

The function move (S, C) gives a new state from state S on input character C.

The function 'nextchar' returns the next character in the string.

Initialization:

S := S0

C := nextchar;

while not end-of-file do

S := move (S, C)

C := nextchar;

end

If S is in F then

return "yes"

else

return "No".

example :

Following figure shows a DFA that recognizes the language (a|b)*abb.

The transition table is

state a b

0 1 0

1 1 2

2 1 3

3 1 0

With this DFA and the input string "ababb", above algorithm follows the sequence of

states: 0,1,2,1,2,3 and returns "yes"

Syntax Analysis
In our compiler model, the parser obtains a string of tokens from the lexical

analyzer, and verifies that the string can be generated by the grammar for the

source program. We expect the parser to report any syntax errors in an

intelligible fashion. It should also recover from commonly occurring errors

so that it can continue processing the remainder of its input.

Fig(8) Position of parser in Compiler model

The methods commonly used in compilers are classified as being either Top-

down or bottom up. As indicated by their names, Top down parsers build

parse trees from the top (root) to the bottom (leaves) and work up to the root.

In both cases, the input to the parser is scanned from left to right, one

symbol at time.

We assume the output of the parser is some representation of the parse tree

for the stream of tokens produced by the lexical analyzer. In practice there

are a number of tasks that might be conducted during parsing, such as

collecting information about various tokens into the symbol table,

performing type checking and other kinds of semantic analysis, and
generating intermediate code.

Parse Tree and Derivations
A parse tree may be viewed as a graphical representation for an derivation

that fillers out the choice regarding replacement order, that each interior

node of parse tree is labeled by some non terminal A, and that the children

of the node are labeled, from left to right, by the symbols in the right side of

the production by which A was replaced in the derivation, the leaves of the

parse tree are labeled by non terminals or terminals and, read from left to

right, they constitute a sentential form, called the yield or frontier of the tree.

For example, the parse tree for -(id+id) implied previously is shown bellow,

For the grammar

E E+E | E-E | E*E | E/E

Parse tree ignores variations in the order in which symbols in sentential

forms are replaced, these variations in the order in which productions are

applied can also be eliminated by considering only left- most or right- most

derivations. It is not hard to see that every parse tree has associated with it

unique left most and unique right most derivations.

Example
Consider the previous arithmetic expression grammar, the sentence id+id*id

has the two distinct left most derivations:

With the two corresponding parse trees shown below:

Two parse trees for id+id*id

Writing Grammar
Grammars are capable

of describing most, but not all of syntax of

programming languages. A limited a mount of syntax Analysis is done by

lexical analyze as it produce the sequence of tokens from the input

characters, certain constraints on the input, such as the requirement that

identifiers be declared before they are used, can not be described by a

context-free-grammar.
Every construct that can be described by a regular expression can also be
described by a grammar. For example, the regular expression (a|b)*abb the

NFA is:

A0 aA0 | bA0 | aA1

A1 bA2

A2 bA3

A3 λ

The grammar above was constructed from NFA using the following

constructed:

• For each state i of NFA, create a non terminal symbol Ai.

• If state i has a transition to state j on symbol a, introduction the production
Ai aAj

• If state i goes to state j on input λ, introduce the production Ai Aj

• If state i is on accepting state introduce Ai λ

• If state i is the start state, make Ai be symbol of the grammar.

RE' S are most useful for describing the structure of lexical constructs such

as identifiers, constants, keywords, and so forth.

Grammars, on the other hand, are most useful in describing nested structures

such as balanced parenthesis, matching begin- end's. corresponding if - then-

else's.
These nested structures cannot be described by RE.

1- Ambiguity: (problems of grammar)

A grammar that produces more than one parse tree for some sentence is

said to be ambiguous. An ambiguous grammar is one that produces more

than one leftmost or more than one right most derivation for the same

sentence. For certain types of parsers, it is desirable that the grammar be

made unambiguous, for if it is not, we can not uniquely determine which

parse tree to select for a sentence.

Sometimes an ambiguous grammar can be rewritten to eliminate the

ambiguity. As an example ambiguous "else" grammar

Stmt Expr then Stmt

| if Expr then Stmt else Stmt

|other

According to this grammar, the compound conditional statement

If El then S1 else if E2 then S2 else S3 has the parse tree link below:

The grammar above is ambiguous since the string

If E1 then if E2 then S1 else S2
Has the two parse trees shown below:

