

Research Registration Form

Unit Department

Research Title

The regenerative effects of acellular nerve allograft loaded with epothilone B on transected rat sciatic nerve.

	Author(s)	Degree	Academic Title	Specialization	Department	Faculty	University	Signature
1	Zhikal Omar Khudhur	MSc	Assist. Lecturer	Physiology	Biology Education	Education	Tishk International University	. 7
2	Shang Ziyad Abdulqadir	PhD	Lecturer	Cell Biology	Biology	Science	Salahaddin University	Stong of Procession
3	Abdullah Faqiyazdin Ahmed	PhD	Assist. Professor	Neurology	Medicine	medicine	Hawler medical university	Helester T. Head
4	Abdulrahman Aziz Rasoul	PhD	Assist. Lecturer	Neurology	(28)		Kurdistan Board of Medical Specialties	
5	Shukur Wasman Smail	MSc	Assist. Lecturer	Immunology	Biology	Science	Salahaddin University	St_
	Seyedeh mahdieh khoshnazar	PhD	Assist. Professor	Physiology	Neuroscience Research Center	Institute of Neuropharmacology	Kerman University of Medical Sciences	Tab co
	Arash Abdolmaleki	PhD	Assist. Professor	Physiology	Biophysics	Advanced Technologies	University of Mohaghegh Ardabili	7
	Mohammad B. Ghayour	PhD	Assist. Professor	Physiology	Biology	Science	Ferdowsi University	

Plan and Goal of the Project

Peripheral nerve injury is a worldwide issue that causes disability and has significant socioeconomic consequences. Although peripheral axons can regenerate and form functional connections, functional restoration following nerve transection is always incomplete, and current treatments, even in the ideal setting, are insufficient.

In this regard, acellular nerve grafts appear to be a promising alternative for bridging peripheral nerve defects in cases where direct suturing of the nerve stump is not possible. However, the regeneration outcome of acellular nerve allograft is not optimal and often inferior to autograft. In addition, evidence suggests that the co-administration of neuroprotective agents that promote neuron survival and axonal outgrowth can be used to improve the regenerative properties of nerve grafts.

The aim of this study is to hypothesize that implanting a decellularized nerve allograft loaded with epothilone B in a transected rat sciatic nerve model will improve nerve regeneration and functional restoration. Epothilone B is an antineoplastic agent approved by the FDA that has been shown to improve microtubule stability and promote a-tubulin polymerization. Furthermore, it has been shown to induce axonal elongation and reduce scarring after SCI (spinal cord injury) in rodents.

So, adult male Wistar rats will be randomly assigned to one of 5 experimental groups (n = 10): healthy control, sham surgery, autograft, acellular nerve allograft, and acellular nerve allograft loaded with epothilone B. Acellular nerve allografts will prepare by decellularization of the sciatic nerves of rats, as described earlier by Hudson et al. (2004). All grafts will be used to bridge a 10 mm sciatic nerve gap. The nerve regeneration process

Research Registration Form

Validity Date 21/04/2021

Revision No Page 2 of 3

Unit Department

in the animals will be monitored for 16 weeks following surgery using functional, electrophysiological, and morphological analyses.

Application Date:	13/9/2022	
Start Date:	1/10/2022	
Estimated Finishing Date:	1/6/2023	

Appro	val of the Scientific Committee
Approved Rejected	
Comment:	
Date	Head of Scientific Committee
-2 11	Name: Do. Oxfon Too
07/11/1/2022	Signature:
137794 1 3 1 1 1 1 1 1 1	Ill ky

	Approval of the Head of Department	
Approved	☐ Rejected	
Comment:		

Unit

Research Registration Form

 Document No
 TIU.FA.FR.524E

 Validity Date
 21/04/2021

 Revision No
 01

 Page No
 Page 3 of 3

Date	Head of Department
/202	Name: Harrind A. Harry Signature: Semid

Department

Faculty Decree

In accordance with the decision of the faculty council, meeting No. decree No. 5 on 6.10.2022, it was decided to accept the request.

Dean of Faculty

Name:

Signature:

Stamp:

Dr. Helmet Özdemli Vice President