Salahaddin University-Erbil
College of Engineering
Department of Architectural Engineering
First Year Students
$2^{\text {nd }}$ Semester

Mathematics I The Rate of Change of a Function(Ch.1)

Shawnm Mudhafar Saleh
shawnm.saleh@su.edu.krd

1.1. Cartesian Coordinate and Equation for Lines

- Coordinates: A pair of numbers that describe the position of a point on a coordinate plane by using the horizontal and vertical distances from the two reference axes. Usually represented by (\mathbf{x}, \mathbf{y}) the x -value and y -value.
- Coordinates make possible to describe lines, curves with coordinate equation
- Origin: The Starting point. The point where the reference axes in a coordinate system meet. The values of coordinates are normally defined as zero.

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- The horizontal axis called \mathbf{x}-axis, the vertical axis called \mathbf{y}-axis.
- On x-axis, the +ve number lies to the right of origin.
- On y-axis, the +ve number lies above origin.
- The ordered pair (a,b) corresponds to the
 point P, where perpendicular to x-axis at (a) crosses the perpendicular to the y-axis at (b)

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- Increment

Definition: if a particle moves from the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) to the point $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ the increments in its coordinates are

$$
\Delta x=x_{2}-x_{1} \quad \text { and } \quad \Delta y=y_{2}-y_{1}
$$

- Slope of a Line

Each non-vertical line has a slope, which we can calculate from increments in coordinates.

- Let L be a non-vertical line in the plane and $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ two points on L.
- We call $\Delta y=y_{2}-y_{1}$ the rise from P_{1} to P_{2} and $\Delta x=x_{2}-x_{1}$ the run from P_{1} to P_{2}. Since L is not vertical, $\Delta x \neq 0$
- Slope

Definition: let $P_{1}\left(x_{1}, y_{1}\right)$ and $p_{2}\left(x_{2}, y_{2}\right)$ be points on a non-
 vertical line L . The slope of L which is denote by m is

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- Note:
- A line that goes uphill as x increases has a +ve slope
- A line that goes downhill as x increases it has -ve slope
- A horizontal line has zero slope
- Example

Slope of L_{1}

$$
\begin{gathered}
m_{1}=\frac{\Delta y_{1}}{\Delta x_{1}} \\
=\frac{5-(-3)}{3-0}=\frac{8}{3}
\end{gathered}
$$

Slope of L_{2}

$$
\begin{gathered}
m_{2}=\frac{\Delta y_{2}}{\Delta x_{2}} \\
=\frac{2-6}{4-0}=\frac{-4}{4}=-1
\end{gathered}
$$

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- Angle of inclination

The slope of non-vertical line is the tangent of its angle of inclination
Or $m=\tan \theta=\frac{\Delta y}{\Delta x}$

- Parallel lines

Parallel lines

Perpendicular lines

Hence, $\quad m_{1} m_{2}=\frac{a}{h} \times\left(-\frac{h}{a}\right)=-1$

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- Equations for lines
- These come in many useful forms:
- Point-Slope Form
- The equation of the line passing though the point $\mathrm{P}_{1=}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with slope m is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Thus given the point $P_{1}=(1,2)$ and the slope $m=-1 / 3$ the equation of the line is

$$
y-2=-\frac{1}{3}(x-1)
$$

- Example

Write the equation of the line with slope $m=-3$ and passing through the point $(4,8)$. Write the final equation in slope-intercept form.

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- Point-Point Form
- The equation of the line passing through the points $\mathrm{P}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{P}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

- Example

Find the slope of a line that passes through the points $(2,-1)$ and $(-5,3)$.

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- Slope- Intercept Form

- The equation of the line passing through the y-axis at the point $(0, b)$ with slope m is

$$
y=m x+b
$$

For example, if $\mathrm{m}=-1 / 2$ and $\mathrm{b}=2$, the equation is $y=-\frac{1}{2} x+2$

- Example

Identify the slope and y-intercept given the equation $y=-\frac{3}{4} x-4$

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- Intercept-Intercept Form

- The equation of the line passing through the intercepts $(a, 0)$ and $(0, b)$ is

$$
\frac{x}{a}+\frac{y}{b}=1
$$

- Example
- Find the equation of the line through $(4,0)$ and $(0,3)$

1.1. Cartesian Coordinate and Equation for Lines(Cont.)

- General Linear Equation

Every line has infinitely many equation of the form
$A x+B y=C \quad(A$ and B not both 0$)$

$$
y=-\frac{8}{5} x+4
$$

- Example

Find the slope and y-intercept of the line $8 x+5 y=20$. Graph the line

For the next lecture we will learn:

- Function and their Graphs

