Salahaddin University-Erbil
College of Engineering
Department of Architectural Engineering
First Year Students
$2^{\text {nd }}$ Semester

Mathematics I Application of Derivative Extreme Value of Function (Maxima and Minima)(Ch.3)

Shawnm Mudhafar Saleh
shawnm.saleh@su.edu.krd

3.2. Maxima, Minima theorem, Local and Absolute

- DEFINITIONS Absolute Maximum, Absolute Minimum
- Let f be a function with domain D. Then f has an absolute maximum value on D at a point c if

$$
f(x) \leq f(c)
$$

and an absolute minimum value on D at c if

$$
f(x) \geq f(c)
$$

- For example, on the closed interval $[-\pi / 2, \pi / 2]$ the function $f(x)=\cos x$ takes on an absolute maximum value of 1 and an absolute minimum value of 0 (twice). On the same interval, the function $g(x)=\sin x$ takes on a maximum value of 1 and a minimum value of -1 .

3.2. Maxima, Minima theorem, local and absolute

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute maximum value M and an absolute minimum value m in $[a, b]$. That is, there are numbers x_{1} and x_{2} in [a, b] with $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{m}, \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{M}$, and $m \leq f(x) \leq M$ for every other x in $[a, b]$

Maximum and minimum at interior points

Maximum at interior point, minimum at endpoint

Maximum and minimum at endpoints

Minimum at interior point, maximum at endpoint

Local Maximum, Local Minimum

- DEFINITIONS Local Maximum, Local Minimum

A function f has a local maximum value at an interior point c of its domain if $f(x) \leq f(c)$ for all x in some open interval containing c
A function f has a local minimum value at an interior point c of its domain if $f(x) \geq f(c)$ for all x in some open interval containing c

Finding Extrema

- THEOREM 2 The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point c of its domain, and if is defined at c , then

$$
f^{\prime} c=0
$$

DEFINITION

Critical Point

An interior point of the domain of a function f where is zero or undefined is a critical point of f.

Examples

1. Find the absolute maximum and minimum values of $f(x)=x^{2}$ on [-2,1]
2. Find the absolute extrema values of $g(t)=8 t-t^{4}$ on $[-2,1]$
3. Find the absolute maximum and minimum vales of $\mathrm{f}(x)=x^{2 / 3}$ on the interval $[-2,3]$

Examples

- What is the largest possible area for a right triangle whose hypotenuse is 5 cm long?
- A highway must be constructed to connect Village A with Village B that 150 mi a part. There is a rudimentary roadway that can be upgraded 50 mi south of the line connecting the two villages. The cost of upgrading the existing roadway is $\$ 300,000$ per mile, whereas the cost of constructing a new highway is $\$ 500,000$ per mile. Find the combination of upgrading and new construction that minimizes the cost of connecting the two villages. Cleary define the location of the proposed highway.
- A drilling rig 12 mi offshore is to be connected by pipe to a refinery onshore, 20 mi straight down the coast from the rig. If underwater pipe costs $\$ 500,000$ per mile and land based pipe costs $\$ 300,000$ per mile, what combination of the two will give the least expensive connection?

