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3.2. Maxima, Minima theorem, Local and Absolute

* DEFINITIONS Absolute Maximum, Absolute Minimum

* Let f be a function with domain D. Then f has an absolute
maximum value on D at a point c if

fx) < f(c)

and an absolute minimum value on D at c if

f(x) = f(c)

* For example, on the closed interval [-1t/2,11/2] the function
f(x) = cos x takes on an absolute maximum value of 1
and an absolute minimum value of O (twice). On the same

interval, the function g(x) = sinx takes on a maximum
value of 1 and a minimum value of -1.
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3.2. Maxima, Minima theorem, local and absolute

THEOREM 1 The Extreme Value Theorem /'\M \
:M L / iM y = f(x)
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minimum value m in [a, b]. That is, there
are numbers x, and x, in [a, b] with
f(x;)=m, f(x,)=M, and m < f(x) < M for
every other x in [a, b]
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Local Maximum, Local Minimum

e DEFINITIONS Local Maximum, Local Minimum

A function f has a local maximum value at an interior point c of its domain if
f(x) < f(c) for all x in some open interval containing c

A function f has a local minimum value at an interior point c of its domain if
f(x) = f(c) for all x in some open interval containing c

Absolute maximum
No greater value of fanywhere.
Local maximum Also a local maximum.

No greater value of
f nearby.

Local minimum
y = f(x)
| No smaller value
f of f nearby.
Absolute minimum
No smaller value of l ocal minimum :
f anywhere. Also a No smaller value of |
local minimum . [ nearby.
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Finding Extrema

* THEOREM 2 The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point c of its
domain, and if is defined at c, then

fle=0

DEFINITION Critical Point

An interior point of the domain of a function f where is zero or undefined
is a critical point of .



Examples

1. Find the absolute maximum and minimum values of f(x) = x* on
[_211]

2. Find the absolute extrema values of g(t) = 8t — t*on [-2,1]

3. Find the absolute maximum and minimum vales of f(x) = x2/30on
the interval [-2,3]



Examples

* What is the largest possible area for a right triangle whose hypotenuse is 5
cm long?

* A highway must be constructed to connect Village A with Village B that 150
mi a part. There is a rudimentary roadway that can be upgraded 50 mi south
of the line connecting the two villages. The cost of upgrading the existing
roadway is $300,000 per mile, whereas the cost of constructing a new
highway is $500,000 per mile. Find the combination of upgrading and new
construction that minimizes the cost of connecting the two villages. Cleary
define the location of the proposed highway.

* A drilling rig 12 mi offshore is to be connected by pipe to a refinery onshore,
20 mi straight down the coast from the rig. If underwater pipe costs
S500,000 per mile and land based pipe costs $300,000 per mile, what
combination of the two will give the least expensive connection?
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