Salahaddin University-Erbil College of Engineering Department of Architectural Engineering First Year Students 2<sup>nd</sup> Semester



# Mathematics I Application of Derivative Concavity and curve sketching(Ch.3)

Shawnm Mudhafar Saleh <u>shawnm.saleh@su.edu.krd</u>

# 3.2. Graphing with y' and y''

• It means how to use derivative when it exists to show the curve behavior.

**First Derivative Test for Monotonic Functions** Suppose that *f* is continuous on [a, b] and differentiable on (a, b). If *f*'x>0 at each point *x* (a,b) then *f* is increasing on [a, b]. If *f*'x<0 at each point *x* (a,b), then *f* is decreasing on [a, b]

#### Concavity

#### • DEFINITION Concave Up, Concave Down

The graph of a differentiable function is

(a) concave up on an open interval I if f' is increasing on I

(b) concave down on an open interval I if f' is decreasing on I.

• The Second Derivative Test for Concavity

Let y = f(x) be twice-differentiable on an interval I. 1. If f'' > 0 on I, the graph of f over I is concave up. 2. If f'' < 0 on I, the graph of f over I is concave down.



### Examples

Ex.1 Applying the concavity test

- a) The curve  $y=x^3$  is concave down on  $(-\infty,0)$  where y''=6x<0and concave up on  $(0,\infty)$  where y''=6x>0
- b) The curve y=x<sup>2</sup> is concave up on (-∞,∞) because its second derivative y"=2 is always positive





• Points of Inflection

**DEFINITION** Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

## Examples

- An Inflection Point May Not Exist Where y'' = 0The curve  $y=x^4$  has no inflection point at x=0. Even though  $y''=12x^2$   $\xrightarrow{y''=0}_{-1}$   $\xrightarrow{y''=0}_{-1}$  is zero there, it does not change sign



- A particle is moving along a horizontal line with position function  $s(t) = 2t^3 14t^2 + 22t 5 \quad t \ge 0$
- Find the velocity and acceleration, and describe the motion of the particle.

#### Strategy for Graphing y f(x)

**1.** Identify the domain of *f* and any symmetries the curve may have.

**2.** Find *y*' and *y*"

- 3. Find the critical points of f, and identify the function's behavior at each one.
- 4. Find where the curve is increasing and where it is decreasing.
- **5.** Find the points of inflection, if any occur, and determine the concavity of the curve.

**6.** Identify any asymptotes.

**7.** Plot key points, such as the intercepts and the points found in Steps 3–5, and sketch the curve.

### Example:

Sketch a graph of the function

$$f(x) = x^4 - 4x^3 + 10$$

### Example

Sketch the graph of

$$f(x) = \frac{(x+1)^2}{1+x^2}$$



## Next lecture we will learn:

• Optimization