Salahaddin University-Erbil
College of Engineering
Department of Architectural Engineering
First Year Students
$2^{\text {nd }}$ Semester

Mathematics I Integration Definite Integration and Area Under the Curve (Ch.4)

Shawnm Mudhafar Saleh
shawnm.saleh@su.edu.krd

Integration

Definite integration
The symbol for the number / in the definition of the definite integrals is

$$
\int_{a}^{b} f(x) d x
$$

Rules satisfied by definite integrals

1. Order of Integration: $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
2. Zero Width Interval: $\int_{a}^{a} f(x) d x=0$

A Definition

3. Constant Multiple: $\quad \int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ Any constant k
4. Sum and Difference: $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. Additivity:

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

Evaluate:

- $\int_{1 / 2}^{3 / 2}(-2 x+4) d x$
- $\int_{1}^{0}\left(3 x^{2}+x-5\right) d x$

Area under the curve

- Definition

If $y=f(x)$ is nonnegative and integrable over a closed interval [a,b], then the area under the curve $y=f(x)$ over $[\mathrm{a}, \mathrm{b}]$ is the integrals of f from a to b,

$$
A=\int_{a}^{b} f(x) d x
$$

Examples

Find the area between the x -axis and the given curve

1. $y=4-x^{2}$ for $-2 \leq x \leq 2$
2. $y=x^{3}-4 x$ for $-2 \leq x \leq 2$

Steps for finding area when f has both positive and negative values on [a,b]

1. Find points where $f=0$
2. Use the zeros of f to partition steps for finding area when f has both positive and negative values on $[a, b]$ into sub intervals.
3. Integrate f over each sub interval.
4. Add the absolute values of the results.

Next lecture we will learn

- Application of integration

