Salahaddin University-Erbil
College of Engineering
Department of Architectural Engineering
First Year Students
$2^{\text {nd }}$ Semester

Mathematics I
 Function and Graphs(Ch.1)

Shawnm Mudhafar Saleh
shawnm.saleh@su.edu.krd

1.2. Function and the Graphs

- In each case, the value of one variable quantity, which we might call y, depends on the value of another variable quantity, which we might call x. Since the value of y is completely determined by the value of x, we say that y is a function of x.
- A function from a set D (Domain) to a set R (Range) is a rule that assigns a single element of R to each element to D it can be described as in the diagram below

Which means
A special relationship where each input has a single output

- Symbolic way to say y is a function of x is

$$
y=f(x)
$$

1.2. Function and the Graphs(Cont.)

- Intervals: The set of values that the variable may take on.
- Open interval: A set of real numbers that does not include its endpoints.

- Half open intervals: A set for which one endpoint is a real number and the other is not.

- Closed interval: A set of real numbers that includes both of its endpoints.

- The end point of the interval called boundary points, the remaining points make up the interval called interior point

1.2. Function and the Graphs(Cont.)

- Domain and Range

- Domain: The largest set of x-values for which the formula gives real y-values.
- Example

Find Dx for $y=x^{2}$
Solution \quad Dx: $-\infty<\mathrm{x}<\infty$

- Range: The real value of y that gives real value of x.
- Example

Find Ry for $y=x^{2}$
Solution $\quad \mathrm{Ry}=[0, \infty)$

Domain: $\{1,2,3, \ldots\}$

$$
f(x)=x^{2}
$$

1.2. Function and the Graphs(Cont.)

- Example Identifying Domain and Range
- Verify the domains and ranges of these functions.

Functions

$$
y=1 / x
$$

$$
y=\sqrt{x}
$$

$$
y=\sqrt{4-x}
$$

$$
y=\sqrt{1-x^{2}}
$$

1.2. Function and the Graphs(Cont.)

- Graphs of functions

- The graph of a function is the set of all points whose co-ordinates (x, y) satisfy the function $y=f(x)$. This means that for each x-value there is a corresponding y-value which is obtained when we substitute into the expression for $f(x)$.
- Steps to graph a function

1. Make a table of xy-pairs that satisfy the function.
2. Plot the pair (x, y) where coordinate appear in the table
3. Draw a smooth curve through the plotted points.

- Example

Sketch these functions
$y=x^{2}$
$y=\frac{1}{x^{2}}$
$y=\sqrt[3]{x}$

1.2. Function and the Graphs(Cont.)

$>$ Even and odd functions

- Even
- A function is "even" when:
$f(x)=f(-x) \quad$ for all x
- in other words there is symmetry about the y-axis:
- they got called "even" functions because the functions $\mathrm{x}^{2}, \mathrm{x}^{4}, \mathrm{x}^{6}, \mathrm{x}^{8}$, etc behave like that
- Odd
- A function is "odd" when:
$-f(x)=f(-x)$ for all x
- And we get origin symmetry:
- They got called "odd" because the functions x, x^{3}, x^{5}, x^{7}, etc behave like that.
- Neither Odd nor Even

Odd

1.2. Function and the Graphs(Cont.)

- Example

These functions are even or odd?

- $f(x)=x /\left(x^{2}-1\right)$
- $\mathrm{f}(\mathrm{x})=0$
- $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1)^{2}$
- $f(x)=x^{3}+1$
- $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$

1.2. Function and the Graphs(Cont.)

- Functions defined in pieces:
- Some functions defined by single formula like

$$
y=x, \quad y=x^{3}, \quad y=\sqrt{x}
$$

- Others are defined by applying different formulas to different parts of their domain

$$
y=f(x)=\left\{\begin{array}{lr}
-x & x<0 \\
x^{2} & 0 \leq x \leq 1 \\
1 & x>1
\end{array}\right.
$$

1.2. Function and the Graphs(Cont.)

$>$ Integer-valued function

- The Greatest Integer Function
- The function whose value at any number x is the greatest integer less than or equal to x is called the greatest integer function or the integer floor function. It is denoted as $\lfloor x\rfloor$
- $\lfloor 2.4]=2, \quad[1.9]=1$,
$[0]=0$,
$\lfloor-1.2\rfloor=-2$,
- $\lfloor 2]=2$,
$\lfloor 0.2\rfloor=0$,
$\lfloor-0.3\rfloor=-1$,
$\lfloor-2\rfloor=-2$.

For the next lecture we will learn:

- Function and their Graphs

