Salahaddin University-Erbil
College of Engineering
Department of Architectural Engineering
First Year Students
$2^{\text {nd }}$ Semester

Mathematics I Function and Graphs (Ch.1)

Shawnm Mudhafar Saleh
shawnm.saleh@su.edu.krd

1.2. Function and the Graphs

- Sums, differences, products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where the denominator is zero) to produce new functions

- Example

The function $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are defined as $f(x)=\sqrt{x}, g(x)=\sqrt{1-x}$

Function
$f+g$
$f-g$
$g-f$
$f . g$
f / g
g / f

Formula
$\sqrt{x}+\sqrt{1-x}$
Domain
[0,1]
$\sqrt{x}-\sqrt{1-x} \quad[0,1]$
$\sqrt{1-x}-\sqrt{x}$
[0,1]
$\sqrt{x(1-x)}$
$\sqrt{\frac{x}{1-x}}$
$\sqrt{\frac{1-x}{x}}$
[0,1]
$[0,1)$
$(0,1]$

1.2. Function and the Graphs

- Composite function

if f and g are functions, the composite function $f \circ g$ is defined by

$$
f \circ g(x)=f(g(x))
$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f.

- Example
if $f(x)=\sqrt{x}$ and $g(x)=x+1$
Find
$f \circ g(x)$
$g \circ f(x)$
$f \circ f(x)$
$g \circ g(x)$
$g \circ g(5)$

1.2. Function and the Graphs

- Absolute values and absolute functions
- Definition: An absolute value function is a function that contains an algebraic expression within absolute value symbols. Recall that the absolute value of a number is its distance from 0 on the number line.
The absolute value function written as $f(x)=|x|$, is defined as

$$
f(x)=|x|= \begin{cases}x & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -x & \text { if } x<0\end{cases}
$$

- Graph of $f(x)=|x|$
- Example
- Solve $|2 x-3|=11$

1.2. Function and the Graphs

- Rules

$$
\begin{array}{ll}
\text { 1. } & |-a|=|a| \\
\text { 2. } & |a b|=|a||b| \\
\text { 3. } & \left|\frac{a}{b}\right|=\frac{|a|}{|b|}
\end{array}
$$

- Triangle inequality

$$
\text { 4. } \quad|a+b| \leq|a|+|b|
$$

- Note: For same signs variables are equal but for differ signs it will be less than
- Example

$$
\begin{aligned}
& |-3+5| \\
& |-3-5|
\end{aligned}
$$

- The number $|a-b|$ are always equal to $|b-a|$ because
$|a-b|=|(-1)(b-a)|=|-1||b-a|=|b-a|$

1.2. Function and the Graphs

Absolute Values and Intervals
 If a is any positive number, then

5. $|x|=a \quad$ if and only if $\quad x= \pm a$
6. $|x|<a \quad$ if and only if $-a<x<a$
7. $|x|>a$ if and only if $x>a$ or $x<-a$
8. $|x| \leq a \quad$ if and only if $-a \leq x \leq a$
9. $|x| \geq a \quad$ if and only if $x \geq a$ or $x \leq-a$

1.2. Function and the Graphs

- Example

What values of x satisfy the inequality

$$
|x-5|<9
$$

- Example

What value of x satisfy the inequality $\left|\frac{2 x}{3}\right| \leq 1$

For next lecture we will learn

- Derivatives

