Salahaddin University-Erbil
College of Engineering
Department of Architectural Engineering
First Year Students
$2^{\text {nd }}$ Semester

Mathematics I Differentiation (Ch.2)

Shawnm Mudhafar Saleh
shawnm.saleh@su.edu.krd

2. Differentiation

- Derivative

Definition: The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Provided the limit exists.

- Different Rules

1. Derivative of a constant

Suppose $y=c$ then $y^{\prime}=\frac{d y}{d x}=0$

- Example: find y^{\prime} for $y=5$

2. Integer power of x

If $y=(x)^{n}$
Then $y^{\prime}=\frac{d y}{d x}=n(x)^{n-1}$

- Example: find y^{\prime} for $y=x^{2}$

2. Differentiation

3. The constant multiple

If u is differentiable function of x and k is constant, then

$$
\frac{d}{d x}(k u)=k \cdot \frac{d}{d x}(u)
$$

- Example: find y^{\prime} for $y=7 x^{4}$

4. The sum and difference

If $y=u \pm v$
Then $y^{\prime}=\frac{d u}{d x} \pm \frac{d v}{d x}$

- Example: find y' for $y=3 x^{2}+4 x-4$

2. Differentiation

5. Products

The product of two differentiable function u and v is differentiable, for $y=u . v$, then

$$
\frac{d y}{d x}=\frac{d}{d x}(u \cdot v)=u \cdot \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Example: find y^{\prime} for $y=\frac{1}{x}\left(x^{2}+\frac{1}{x}\right)$

6. The quotient

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u / v is differentiable at x , and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

- Example: Find y' for $y=\frac{t^{2}-1}{t^{2}+1}$

2. Differentiation

- Second and higher order derivatives

The derivative $y^{\prime}=\frac{d y}{d x}$ is the first derivative of y with respect to x , the first derivative may also be a differentiable function of x, if so its derivative is second derivative

$$
\begin{gathered}
y^{\prime \prime}=\frac{d^{\prime} y}{d x}=\frac{d}{d x}\left(y^{\prime}\right)=\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}
\end{gathered}
$$

Or it may be Third derivative

$$
y^{\prime \prime \prime}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)
$$

2. Differentiation

- Example: find the first and second derivatives

1. $s=5 t^{3}-3 t^{5}$
2. $w=3 z^{7}-7 z^{3}+21 z^{2}$
3. $r=\frac{1}{3 s^{2}}-\frac{5}{2 s}$

Example: Find y' for

1. $y=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right)$
2. $y=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+x+1\right)}$
3. $r=2\left(\frac{1}{\sqrt{\theta}}+\sqrt{\theta}\right)$

- Example: does the function $y=x^{4}-2 x^{2}+2$ have any horizontal tangent? If so, where?
- Example: find the equation of the tangent to the curve $y=x+\frac{2}{x}$ at the point $(1,3)$

Examples:

$$
\begin{gathered}
y=\frac{x^{4}}{2}-\frac{3}{2} x^{2}-x \\
s=\frac{t^{2}+5 t-1}{t^{2}}
\end{gathered}
$$

For next lecture we will learn

- The derivatives as a rate of change

