Salahaddin University-Erbil College of Engineering
Department of Water Resources Engineering 2022/2023

Mathematics II Chapter seven Products of sine and cosine

Shawnm Mudhafar Saleh
shawnm.saleh@su.edu.krd

Powers of Sine and Cosine

- For integral $\int \sin ^{m} x \cos ^{n} x d x$, and $\mathrm{n} \& \mathrm{~m}$ are non-negative integral (positive and zero)
- We have three cases:
- Case 1: if m is odd use the identity $\sin ^{2} x=1-\cos ^{2} x$
- Then we combine the single $\sin \mathrm{x}$ with dx in the integral and set $\sin \mathrm{x}$ $d x$ equal $-\mathrm{d}(\cos \mathrm{x})$
- Case 2: if m is even and n is odd use the identity $\cos ^{2} x=1-\sin ^{2} x$
- Then we combine the single $\cos x$ with $d x$ in the integral and set $\cos x$ $d x$ equal $d(\sin x)$
- Case 3: if both m and n are even, we substitute
- $\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad, \cos ^{2} x=\frac{1+\cos 2 x}{2}$

Examples illustrating each cases

1. $\int \sin ^{3} x \cos ^{2} x d x$
2. $\int \cos ^{5} x d x$
3. $\int \sin ^{2} x \cos ^{4} x d x$

Products of sine and cosine

Products of Sines and Cosines

The integrals

$$
\int \sin m x \sin n x d x, \quad \int \sin m x \cos n x d x, \quad \text { and } \quad \int \cos m x \cos n x d x
$$

Rules:

$$
\begin{aligned}
\sin m x \sin n x & =\frac{1}{2}[\cos (m-n) x-\cos (m+n) x] \\
\sin m x \cos n x & =\frac{1}{2}[\sin (m-n) x+\sin (m+n) x] \\
\cos m x \cos n x & =\frac{1}{2}[\cos (m-n) x+\cos (m+n) x] .
\end{aligned}
$$

Example:

- $\int \sin 3 x \cos 5 x d x$

