Salahaddin University-Erbil

 College of EngineeringDepartment of Water Resources Engineering 2022/2023

Mathematics II Matrices

Shawnm Mudhafar Saleh shawnm.saleh@su.edu.krd

What is Matrix?

- A matrix is a rectangular array of elements arranged in horizontal rows and vertical columns, that is used in a great variety of ways, such as to solve linear systems, and model linear behavior.
- Matrix usually enclosed in brackets. We use capital letters (A, B, C, ...) to denote a matrix. The notation $A_{m \times n}=\left[a_{i j}\right]_{m \times n}$ means that the element in the i-th row and j-th column of the matrix A equals $a_{i j}$.
- Matrices come in various shaped depending on the number of rows and columns. A matrix having m rows and n columns has size m by n, written $m \times$ n.

$$
A=\left[\begin{array}{ccccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 j} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i j} & \ldots & a_{i n} \\
\vdots & \vdots & \vdots & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m j} & \ldots & a_{m n}
\end{array}\right]
$$

What is Matrix?

- A matrix with only one row is called a row matrix, $\mathrm{A}=\left[a_{11} a_{12} a_{13} \ldots a_{1 n}\right]$, It is a row matrix with n columns. So, it is of type $1 \times n$
- A matrix with only one column is called a column matrix. $A=\left[\begin{array}{c}a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m 1}\end{array}\right]$

It is a column matrix with m rows. So, it is of type $m \times 1$.

- Let $A_{m \times n}$ be any matrix. Then A is said to be square matrix, if $m=n$, $i=1,2,3, \ldots, \mathrm{n} ; j=1,2,3, \ldots, \mathrm{n}$.

What is Matrix?

A square matrix in which all the nondiagonal elements are zero is called a diagonal matrix.
A is a diagonal matrix of order m or $n(m=n)$. $A=\left[\begin{array}{ccccc}a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \\ 0 & 0 & 0 & \cdots & a_{m n}\end{array}\right]$

What is Matrix?

In a diagonal matrix, if all the diagonal elements are equal to 1 , then it is called a Unit matrix or identity matrix.

$$
[1],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

What is Matrix?

In a matrix (rectangular or square), if all the entries are equal to 0 , then it is called a zero matrix or null matrix.
$A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
The above matrices A, and B are zero matrices of types 2×2 and 2×4 respectively.

Matrix

EXAMPLE 1

For the matrix A, find $a_{12}, a_{53}, a_{32}, a_{44}, a_{14}, a_{25}$.

EXAMPLE 2

$$
A=\left[\begin{array}{rrrrr}
-1 & 3 & 23 & -3 & -5 \\
-2 & 4 & -2 & 11 & 23 \\
-7 & 0 & -9 & 17 & 35 \\
-9 & 8 & 11 & 18 & -7 \\
11 & 1 & 20 & 85 & 92
\end{array}\right]
$$

What is the size of the following matrices:

$$
A=\left[\begin{array}{lll}
11 & -2 & -1 \\
21 & 22 & -3
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad C=\left[\begin{array}{llll}
4 & 2 & 3 & 9 \\
0 & 9 & 1 & 6 \\
1 & 6 & 2 & 5
\end{array}\right]
$$

Matrix

Transpose:

$\begin{aligned} & \text { If a given matrix } A \text {, we interchange the rows and the } \\ & \text { corresponding columns, the new matrix obtained }\end{aligned} \quad A=\left[\begin{array}{lll}2 & 3 & 4 \\ 1 & 0 & 5 \\ 6 & 7 & 8\end{array}\right], A^{\prime}=\left[\begin{array}{lll}2 & 1 & 6 \\ 3 & 0 & 7 \\ 4 & 5 & 8\end{array}\right]$ is called the transpose of the matrix A and denoted by A^{\prime} or A^{T}.

A square matrix will called symmetric matrix, if for all values of i and $j, a_{i j}=a_{j i}$ or $A=A^{\prime}$
A square matrix is called skew-symmetric matrix, if : $\quad\left[\begin{array}{ccc}0 & -h & -g \\ h & 0 & -f \\ \text { 1) } a_{i j}=-a_{j i} \text { for all values of } \mathrm{I} \text { and } \mathrm{j} \text {, or } A^{\prime}=-A\end{array}\right]$
2) All Diagonals elements are zero
$\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$

Matrix

A square matrix, all of whose elements below the leading diagonal are zero is called upper triangular matrix
A square matrix, all of whose elements Above the leading diagonal are zero is called lower triangular matrix

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
0 & 4 & 1 \\
0 & 0 & 6
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 0 \\
4 & 1 & 0 \\
5 & 6 & 7
\end{array}\right]
$$

Upper triangular matrix Lower triangular matrix

Matrix operations

Addition and Subtraction of Matrices

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of the same type $m \times n$. Then $A+B=\left[c_{i j}\right]$, where $c_{i j}=a_{i j}+b_{i j}$ for all i and j and $A+B$ is of type $m \times n$.

To be added or subtracted, two matrices must be of the same order. The sum or difference is then determined by adding or subtracting corresponding elements.

$$
\begin{aligned}
C=\left[c_{i j}\right]=A+B & =\left[a_{i j}\right]+\left[b_{i j}\right] \\
& =\left[a_{i j}+b_{i j}\right]
\end{aligned}
$$

Thus, $\quad c_{i j}=a_{i j}+b_{i j} ; i=1,2,3, \ldots m$

$$
j=1,2,3, \ldots n
$$

$$
\begin{aligned}
C=\left[c_{i j}\right]=A-B & =\left[a_{i j}\right]-\left[b_{i j}\right] \\
& =\left[a_{i j}-b_{i j}\right]
\end{aligned}
$$

Thus, $\quad c_{i j}=a_{i j}-b_{i j} ; i=1,2,3, \ldots m$

$$
j=1,2,3, \ldots n
$$

The order of the new matrix C is same as that of A and B.

Matrix operations

Properties of Addition and Subtraction of Matrices

If A, B, C are matrices of the same type, then
(i) $A+B=B+A$
(ii) $A+(B+C)=(A+B)+C$
(iii) $A+0=A$
(iv) $A+(-A)=0$
(v) $\boldsymbol{\alpha}(A+B)=\boldsymbol{\alpha} A+\boldsymbol{\alpha} B$
(vi) $(\boldsymbol{\alpha}+\boldsymbol{\beta}) A=\boldsymbol{\alpha} A+\boldsymbol{\beta} A$
(vii) $\boldsymbol{\alpha}(\boldsymbol{\beta} A)=(\alpha \beta) A$ for any scalars α, and $\boldsymbol{\beta}$

Matrix operations

Scalar Multiplication

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix and k be a scalar, then $k A=\left[k a_{i j}\right]$.
If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$, then $k A=\left[\begin{array}{lll}k a_{11} & k a_{12} & k a_{13} \\ k a_{21} & k a_{22} & k a_{23}\end{array}\right]$
In particular if $k=-1$, then $-A=\left[\begin{array}{lll}-a_{11} & -a_{12} & -a_{13} \\ -a_{21} & -a_{22} & -a_{23}\end{array}\right]$

Matrix operations

EXAMPLE 2

Find:
i) $A+B$
ii) $B-A$
iii) $A^{\prime}+B^{\prime}$

EXAMPLE 3

$$
A=\left[\begin{array}{rrr}
4 & 2 & 5 \\
1 & 3 & -6
\end{array}\right], B=\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 4
\end{array}\right]
$$

Find:
i) 2 A
ii) $\quad-3 B$
iii) $-4 A+5 B$

