Salahaddin University-Erbil

 College of EngineeringDepartment of Water Resources Engineering 2022/2023

Mathematics II Matrices

Shawnm Mudhafar Saleh shawnm.saleh@su.edu.krd

Matrix operations

Multiplication of Matrices

Two matrices $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$ are said to comparable for the product $A B$, if the number of columns in the matrix A is equal to the number of rows in the matrix B. Then the matrix multiplication exists.
Let $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$ be two matrices.
Then, the product $A B$ is the matrix $C=\left[c_{i j}\right]_{m \times p}$ such that:

$$
\begin{aligned}
& C=A B \\
& C_{i j}=\left[a_{i j}\right]\left[b_{i j}\right] \\
& C_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{1 n} b_{n j}
\end{aligned}
$$

$$
\begin{aligned}
\text { e.g. if } \mathbf{A} & =\left(a_{i j}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \text { and } \mathbf{b}=\left(b_{i}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
\text { then } \mathbf{A . b} & =\left(\begin{array}{lll}
\overrightarrow{a_{11}} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
& =\binom{a_{11} b_{1}+a_{12} b_{2}+a_{13} b_{3}}{a_{21} b_{1}+a_{22} b_{2}+a_{23} b_{3}}
\end{aligned}
$$

Matrix operations

Properties Transpose of a Matrix

(i) $\left(A^{\mathrm{T}}\right)^{\mathrm{T}}=A$
(ii) $(A+B)^{\mathrm{T}}=A^{\mathrm{T}}+B^{\mathrm{T}}$
(iii) $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$
(iv) $(\boldsymbol{\alpha} A)^{\mathrm{T}}=\boldsymbol{\alpha} A^{\mathrm{T}}$

Matrix operations

EXAMPLE 1
Find:
A.B

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
1 & -2 \\
-1 & 0 \\
2 & -1
\end{array}\right]
$$

Matrix operations

Determinant of a matrix

The determinant of a matrix is a scalar (number), obtained from the elements of a matrix by specified, operations, which is characteristic of the matrix. The determinants are defined only for square matrices. It is denoted by $\operatorname{det} \mathbf{A}$ or $|\mathbf{A}|$ for a square matrix A.
The determinant of the (2×2) matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

$$
\text { is given by det } \begin{aligned}
A=|A| & =\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \\
& =a_{11} a_{22}-a_{12} a_{21}
\end{aligned}
$$

Matrix operations

Determinant of a matrix

The determinant of the (3×3) matrix

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text {, denoted by }|A|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

is given as, $\operatorname{det} \mathrm{A}=|\mathrm{A}|$

$$
\begin{aligned}
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

Matrix operations

EXAMPLE 1
Find:
|A|

$$
A=\left[\begin{array}{cc}
3 & 1 \\
-2 & 3
\end{array}\right]
$$

EXAMPLE 2
Find:
$\|\mathrm{A}\|$

0 \& 1 \& -2

1 \& 3 \& 4\end{array}\right]\)

Adjoint of a square Matrix

Let the determinant of the square matrix A be $|A| . \quad A=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$ The matrix formed by the co-factors of the elements in

$$
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]
$$

$|A|$ is $\left[\begin{array}{ccc}A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3}\end{array}\right]$
$\left[\begin{array}{lll}C_{1} & C_{2} & C_{3}\end{array}\right]$

- Then the transpose of the matrix of co-factors

$$
\begin{array}{ll}
A_{1}=\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|=b_{2} c_{3}-b_{3} c_{2}, & A_{2}=-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|=-b_{1} c_{3}+b_{3} c_{1} \\
A_{3}=\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|=b_{1} c_{2}-b_{2} c_{1}, & B_{1}=-\left|\begin{array}{ll}
a_{2} & a_{3} \\
c_{2} & c_{1}
\end{array}\right|=-a_{2} c_{3}+a_{3} c_{2} \\
B_{2}=\left|\begin{array}{ll}
a_{1} & a_{3} \\
c_{1} & c_{1}
\end{array}\right|=a_{1} c_{3}-a_{3}, & B_{3}=-\left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right|=-a_{1} c_{2}+a_{2} c_{1} \\
C_{1}=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|=a_{2} b_{3}-a_{3} b_{2}, & C_{2}=-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|=-a_{1} b_{3}+a_{3} b_{1} \\
C_{3}=\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
\end{array}
$$

Adjoint of a square Matrix

EXAMPLE 1

Find:
adj A

$$
A=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

