بسم الله الرحمن الرحيم

Construction Materials

Properties and Testing

Lecture #1
Concrete Laboratory

Test #1: Compressive Strength of Clay Brick

By
Sherzad Qadir Hakkari

Introduction

- > Clay products are one of the most important classes of structural materials.
- ➤ One of the oldest building material brick continues to be a most popular and leading construction material because of being cheap, durable and easy to handle and work with.
- ➤ Clay bricks are used for building-up exterior and interior walls, partitions, piers, footings and other load bearing structures.

Introduction

- > The Compressive strength of clay bricks depends on:
 - The type of clay used,
 - How the units are made,
 - The temperature and duration of firing, and
 - The shape and size.
- ➤ When the bricks laid in a structure are subjected to compression, the bricks placed in bottom layers are subjected to greater compression and are thus liable to damage.
- > So the bricks are therefore to be tested for compression.

Test Objective

The objective of the compression strength test of clay brick is to determine the resistance of the brick under exposed compressive load.

Requirements

- This test is done according to <u>ASTM C 67</u>, Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile and <u>Iraqi specification No24/1988.</u>
- The selected Specimens shall be representative of a lot of units and brushed to remove dirt, mud, mortar and any foreign materials.
- According to the ASTM specification, the number of selected specimens is at least 10 individual bricks for lots of 1 000 000 bricks or fraction.

Requirements

- ➤ The test specimens shall consist of dry half brick from ten selected specimens.
 - (Full Depth) X (Full Width) X (0.5 Length).
- ➤ If there is a problem with the test machine the specimens can be dimensioned (Full Depth) X (Full Width) X (Length not less than of 0.25 the full length) and with a gross cross-sectional area perpendicular to bearing not less than (90.3 cm2).
- ➤ Each specimen shall be marked to identify at any time and shall cover not more than 5% of the superficial area of the specimen.

Apparatus

Electrical Oven

Apparatus

Compressive Test Machine

Procedure

1. Select 5 half-brick from 5 bricks which are selected randomly

Procedure

2. Dry the specimen in a drying oven at a temperature of (110 to 115°C) for not less than 24 hrs.

Procedure

3. Remove the bricks from the oven and cool them to room temperature (24 ± 8 °C), with a relative humidity between 30 and 70 %.

Procedure

4. Put brick specimens flatwise (applied load in the direction of the depth of brick) in the testing machine and load them utile the specimens crushed and record the maximum applied load. Test structural clay brick specimens in a position such that the load is applied in the same direction as in service.

Calculation

The compressive strength for each specimen to the nearest 0.01 MPa as follow:

Compressive Strength,
$$C = \frac{P}{A}$$

Where:

P: maximum recorded load indicated in testing machine (N).

A: Average of the gross of the upper and lower bearing surface of the specimens mm2.

Specification

According to ASTM specification, the minimum compressive strength of the clay brick illustrated as follow:

Minimum Compressive

			Strength (MPa)
Grade	Grade ASTM Specification		Average of 5 brick	Individual
C 62	Building Brick	SW: Sever Weathering .	20.7	17.2
		MW: Moderate Weathering	17.2	15.2
	Differ	NW: Negligible Weathering	10.3	8.6

Specification

According to ASTM specification, the minimum compressive strength of the clay brick illustrated as follow:

			Minimum Com Strength (•
Grad e	ASTM Specification		Average of 5 brick	Individual
Fasina		SW: Sever Weathering .	20.7	17.2
C 216	Facing Brick	MW: Moderate Weathering	17.2	15.2

Specification

According to ASTM specification, the minimum compressive strength of the clay brick illustrated as follow:

			Minimum Com Strength (•
Grad e	ASTM Specification		Average of 5 brick	Individual
Hallavi		SW: Sever Weathering .	20.7	17.2
C 652	Hollow Brick	MW: Moderate Weathering	17.2	15.2

Specification

According to ASTM specification, the minimum compressive strength of the

clay brick illustrated as follow:

Minimum Compressive Strength (MPa)

Grad e	ASTM Spe	ecification	Average of 10 brick	Individua I
Pedestrian and Light C 902 Traffic Paving Brick	SX: Sever Weathering Extra cont.	27.6	24.1	
	Traffic	MX: Moderate Weathering Extra	20.7	17.2
		NX: Negligible Weathering Extra	20.7	17.2

Specification

According to ASTM specification, the minimum compressive strength of the clay brick illustrated as follow:

Minimum					
Compressive					
Strength	(MPa)				

Grad e	ASTM Specification	Average of 10 brick	Individua I	
C 1272 Heavy Vehicular Paving		F: Freezing	69.9	60.7
C 12/2	Brick	R: Thawing	55.2	48.3

Specification

According ASTM specification, the minimum compressive strength of the clay brick illustrated as follow:

Minimum				
Compre	ssive			
Strength	(MPa)			

Grad e	ASTM Specification	Average of 10 brick	Individua I	
C 124		Vert.	20.7	17.2
C 126 coring Ceramic Glazed Facing Break		Horiz	13.8	10.3

Specification

According to ASTM specification, the minimum compressive strength of the clay brick illustrated as follow:

Minim	um				
Compressive					
Strength	(MPa)				

Grade	ASTM Specification	Average of 10 brick	Individua I	
C 1405	Single Fired Glazed Brick	EXT.	41.4	34.8
		INT.	20.7	17.2

> the mi	Specification ding to Iraqi specification No. 24/1988, nimum compressive strength of the clay brick ated as follow:	Minime Compres Strength	ssive
Iraqi Sp	ecification	Average of 10 brick	Individua I
Class A	Used to structure parts and foundation loaded and exposed to erosion because of climatic effects and for external walls exposed to erosion.	18.0	16.0
Class B	Used for bearing structure parts unexposed to erosion or for internal wall protected from moisture	13.0	11.0
Class C	Used for structure parts unexposed to climatic effects and unloaded as a partitions.	9.0	7.0

Data Sheet

Group No.	Area (mm2)	Load P(N)	Compressive Strength MPa	Average Compressive Strength
1				
2				
3				
4				
5				

