Concrete Works

The concrete for a project may be either ready mixed or mixed on the job.
When estimating footings, columns, beams, and slabs, their volume is determined by taking the linear dimension of each item times its cross-sectional area.

The procedure that should be used to estimate the concrete on a project is as follows:

1. Review the specifications to determine the requirements for each area in which concrete is used separately (such as footings, floor slabs, and walkways) and list the following:
(a) Type of concrete
(b) Strength of concrete
(c) Color of concrete
(d) Any special curing or testing
2. Review the drawings to be certain that all concrete items shown on the drawings are covered in the specifications.
3. List each of the concrete items required on the project.
4. Determine the quantities required from the working drawings. Footing sizes are checked on the wall sections and foundation plans. Watch for different size footings under different walls.

Examples

Use the following building plan and cross-sections to calculate the concrete contained in the following items:
a. Blinding
b. Continuous and Spread Footings, and Grade Beams
c. Retaining and Bearing Walls, and Columns
d. Basement and Ground Floorings
e. Staircases
f. Solid and Ribbed Slabs

Blinding

Measured in m^{2}

Blinding of continuous Footing $(1-1)=$ Width \times Length
$=1.7 \times(12+10+4+8+5+7.5+3+5+4+3+10+3+12+18.5+8+10+8-1.7)$
$=219.81 \mathrm{~m}^{2}$
Blinding of Single Footings $\left(F_{1}\right)=$ Width \times Length \times Number
$=1.7 \times 1.7 \times 3=8.67 \mathrm{~m}^{2}$
Blinding of Grade Beam $(T-T)=$ Width \times Length
$=0.5 \times(7.7+10.2+11.4+4.7+7.7)=20.85 \mathrm{~m}^{2}$
Total Blinding Area $=219.81+8.67+20.85=249.33 \mathrm{~m}^{2}$

Concrete of Footings

Measured in m^{3}

Continuous Footing $(1-1)=$ Width \times Depth \times Lenght
$=1.5 \times 0.4 \times(12+10+4+8+5+7.5+3+5+4+3+10+3+12+18.5+8+10+8-1.5)$
$=78.42 \mathrm{~m}^{3}$

Single Footing (F1) $=$ Width \times Depth \times Lenght \times Number
$=1.5 \times 0.4 \times 1.5 \times 3=m^{3}$
Grade Beam $(T-T)=$ Width \times Depth \times Lenght
$=0.3 \times 0.4 \times(7.7+10.2+5.7+5.7+4.7+7.7)=m^{3}$
*When ordering concrete to the project site, add 5% to the calculated volumes for waste and round off.

Concrete of Walls and Columns: Measured in m^{3}
a. Retaining Walls of the Basement
b. Bearing Walls outside the Basement
c. Shear Walls of the Staircases
d. Columns

Concrete of Floors: Measured in m^{2}

Concrete of Stairs: Measured in m^{3}

Concrete of Slabs

Measured in m^{3}

Ground Floor Slab

Ribbed Slab

Beams

TB

B1

B2

Find concrete volume for the following types of slabs:
(A) Solid Slab. (B) One-way Ribbed Slab

Item	Work Description	Unit	Dimensions			No.	Total Quantity	Notes
			Length	Width	Height			
1	Solid Slab	m^{3}	4.4	3.7	0.20	1	3.256	Basement Slab (A)
2	One-way Ribbed Slab	m^{3}	1.3	10	0.31			
			7.4	13.7	0.31			
			5.9	9.9	0.31			
			2.1	5.9	0.31		57.406	
						16×13		(C)
						15×17		(D)
						7×10		(E)
						38×18		(B)

Slab Block Dimensions

Steel Reinforcement

The reinforcing used in concrete may be reinforcing bars, welded wire mesh (WWF), or a combination of the two.

Size (mm)	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{1 8}$	$\mathbf{2 0}$
Area (mm²)	28.3	50.3	78.5	113.0	153.96	201.0	254.0	314.0
Weight (kg per m)	0.222	0.395	0.617	0.888	1.209	1.58	$\mathbf{2 . 0 0}$	2.47

Size (mm)	$\mathbf{2 2}$	$\mathbf{2 5}$	$\mathbf{2 8}$	$\mathbf{3 2}$	$\mathbf{3 6}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$
Area (mm ${ }^{\mathbf{2}}$)	381.0	491.0	616.0	804.0	1020.0	1257.0	1509.0	1963.0
Weight (kg per m)	2.98	3.85	4.83	6.31	7.99	9.86	12.50	15.41

Unit weight of standard reinforcing steel bars

Unit Weight of \emptyset Bar $=\frac{\emptyset^{2}}{18^{2}} \times 2(\mathrm{~kg} / \mathrm{m})$

Example:

Find reinforcement bars quantities and weight for the following items:

1. Footings. 2. Walls. 3. Columns. 4. Slabs

Item	Work Description	Reinforcement Bar Shape	Bars Length	Number of Bars	Total Length	Weight per 1 m.r	Total Weight
1.1	Footing 2		$\begin{aligned} & (3.8-.08+0.6- \\ & .08) \times 2+.2=7.24 \end{aligned}$	$\begin{gathered} (2.9-.08) / .15+1=20 \\ 20 \times 1=20 \end{gathered}$	144.8	0.888	128.6 kg
			$\begin{aligned} & (2.9-.08+0.6- \\ & .08) \times 2+.2=6.88 \end{aligned}$	$\begin{gathered} (3.8-.08) / .15+1=26 \\ 26 \times 1=26 \end{gathered}$	178.9	0.888	158.8 kg
1.2	Continuous footing section 1-1 (30 m)		6	$\begin{gathered} 30 /(6-50 \times .012)=5.5 \\ 5 \times 12=60 \end{gathered}$	360	0.888	319.7 kg
			$\begin{gathered} 30-(5.4 \times 5)=3 \mathrm{~m} \\ 3+0.6=3.6 \mathrm{~m} \end{gathered}$	12	43.2	0.888	38.4 kg
			$\begin{gathered} (1.2-.08+.6-.08) \times 2 \\ +.2=3.5 \mathrm{~m} \end{gathered}$	$30 / .2=150$	525	0.888	466.2 kg
2.	Walls (length 30 mx height 4 mx thickness 0.3 m)		$4+.55+.6=5.15$	$2 \times 30 / .2=300$	1545	0.888	$1,372.0 \mathrm{~kg}$
		$\emptyset 12$	6	$\begin{gathered} 2 \times(4 / .2+1)=42 \\ 42 \times 5.5=231 \end{gathered}$	1386	0.888	$1,230.8 \mathrm{~kg}$
3.	Columns C1 (height $4 \mathrm{~m}, 2$ columns)		$4+.55+.6=5.15$	$10 \times 2=20$		1.58	
	C1 Stirrups		$\begin{aligned} & (.45+.25) \times 2+.1= \\ & (.15+.25) \times 2+.1= \end{aligned}$	4/.15=		0.617	

			$(.45+.13) \times 2+.1=$			
4.	Slabs					
	Solid Slab	$\subset \varnothing 12 \square^{10 \varnothing}$	$\begin{aligned} & \hline 3.1+.3+.12+.12= \\ & 3.8+.3+.12+.12= \end{aligned}$	$\begin{aligned} & 2 \times 3.8 / .15= \\ & 2 \times 3.1 / 15= \end{aligned}$	0.888	
	Ribbed Slab (B,C)	$\overbrace{}^{2010 \mathrm{~T}}{ }^{100}$	$\begin{gathered} 10-.3+.1+.1= \\ 10+3.7-.3+.1+.1= \end{gathered}$	$\begin{aligned} & 2 \times 4= \\ & 2 \times 12= \end{aligned}$	0.617	
		2014 T				
		$100 \sim 2012 \mathrm{~B}$				
		2014 B				
		2012 B -				
	Ribbed Slab (D,E)					
	B1					
	B2					
	B4					
	CR					
	DR					

Assume concrete covering is 4 cm .

Assume the length of continuous footing is 30 m .

Assume required reinforcement overlapping equals 50 times the bar diameter.

