Date:	Examination No.:	Version:2022-2023	Start:1/2/2023		
Module Name - Code	Theory of Vibrations-3117				
Module Language:	English				
Responsible:	Dr. Shirin Othman Muhammad				
Lecture (s):	Dr. Shirin Othman Muhammad				
College:	College of Engineering – Salahaddin University-Erbil				
Duration:	15 week – 1 semester				
Course outcomes:	At the end of the semester, students would be able to understand the characteristics of				
	undamped and damped free and forced vibrations and the role of resonance in the design of				
	mechanical systems. Analyze and solve free and forced vibration responses of two and multi-				
	degree-of-freedom systems with emphasis on minimizing or absorbing vibration.				
Course Content:	Introduction to Vibration Systems, free and forced vibration analysis for undamped and damped single degree of freedom systems. Natural frequency calculation for translational and torsional systems. Coulomb damping, rotating unbalance, support motion, vibration absorption and vibration isolation systems.				
Literature:	S. S.Rao " Mechanical Vibration".				
	William Thomson" T	heory of vibration with applications"			
Type of Teaching:	Two forms of teaching are generally used: power point using data-show and white board for				
	deriving and solving problems. Students will be participated in solving problems, group				
	discussions are allowed in lectures.				
Pre-requisites:	None				
Preparation Modules:	Students must have backgroun	nd about strength of materials, thermod	dynamics, and dynamics.		
Frequency:	Every year				
Requirements for credit points:	For the award of credit points	s, it is necessary to pass the module ex	ams. It contains:		
	Midterm examination, Lab Ro	eports, Quizzes and Final examination			
	Student's attendance is requ	ired in all classes.			
	Students with more than 109 allowed to enter the final exa	6 absent records and/or student effo am.	rt less than 20% are not		
	Lab reports will not be accep	ted for those not attending the lab se	essions.		
Credit point:	5				

Grade Distribution:	 The following grade system is used for the evaluation of the module exam: The module exam is based on the summation of two categories of evaluations: First: (40%) of the mark is based on the academic semester effort which includes Midterm examination during the academic semester =17%. Assignment, quiz and homework = (8%). practical part: includes writing report with discussion about studied experiments (15%) Second: (60%) of the mark is based on final examination that is comprehensive for the whole of the study materials reviewed during the academic semester. Theoretical exam 50%. 		
	Practical exam 10%		
Work load:	The workload is 135 hrs. It is the result of 90 hrs. attendance and 45 hrs. self-studies (Assignments, preparation for exam and applications).		

Details of lectures per weeks of the academic semester

Week	Date	Theoretical Lectures details	
No.			
1		Module description+ Introduction to vibrations	
2		Introduction to mechanical vibration+ free vibration analysis on single	
		degree of freedom systems (undamped, Newton's method)	
3		Free vibration analysis on single degree of freedom systems (undamped, energy method)	
4		Solving problems on both cases+ free vibration analysis on single degree of freedom systems (damped)	
5		Quiz 1+ continuing free vibration analysis on single degree of freedom systems (damped)+ solving problems	
6		Coulomb damping+ solving problems	
7		continuous exam + forced vibration analysis on single degree of freedom	
		systems (undamped)	
8		Solving problems+ forced vibration analysis on single degree of freedom systems (damped)	
10		Solving problems+ Quiz2	
11		Solving problems+ rotating unbalance	
12		Quiz 3+ support motion	
13		Solving problems + vibration absorption systems	
14		Two degree of freedom systems	
15		Final exam	