Date:	Examination No.:	Version:2022-2023	Start:4/9/2022	
Module Name -	Theory of Vibrations-3117	L		
Code				
Module	English			
Language: Responsible:	Dr. Shirin Othman Muhammad			
Lecture (s):	Dr. Shirin Othman Muhammad			
College:	College of Engineering – Salahaddin University-Erbil			
Duration:	15 week – 1 semester			
Course outcomes:				
Course outcomes.	At the end of the semester, students would be able to understand the characteristics of			
	undamped and damped free and forced vibrations and the role of resonance in the design of			
	mechanical systems. Analyze and solve free and forced vibration responses of two and multi-			
	degree-of-freedom systems with emphasis on minimizing or absorbing vibration.			
Course Content:	Introduction to Vibration Systems, free and forced vibration analysis for undamped and damped single degree of freedom systems. Natural frequency calculation for translational and torsional systems. Coulomb damping, rotating unbalance, support motion, vibration absorption and vibration isolation systems.			
Literature:	S. S.Rao " Mechanical Vibration".			
	William Thomson" Theory of vibration with applications"			
Type of Teaching:	Two forms of teaching are generally used: power point using data-show and white board for			
	deriving and solving problems. Students will be participated in solving problems, group			
	discussions are allowed in lectures.			
Pre-requisites:	None			
Preparation	Students must have background about strength of materials, thermodynamics, and dynamics.			
Modules: Frequency:	Every year			
Requirements for		s, it is necessary to pass the module e	xams It contains:	
credit points:	To the award of create points	, it is necessary to pass the module ca	Name to Contains.	
	Midterm examination, Lab Ro	eports, Quizzes and Final examination	1.	
	Student's attendance is requ	ired in all classes.		
	Students with more than 159 allowed to enter the final ex	% absent records and/or student effo am.	ort less than 20% are not	
	Lab reports will not be accep	ted for those not attending the lab so	essions.	
Credit point:	5			

Grade Distribution:	The following grade system is used for the evaluation of the module exam: The module exam is based on the summation of two categories of evaluations: First: (40%) of the mark is based on the academic semester effort which includes - Midterm examination during the academic semester =17%. - Assignment, quiz and homework = (8%). - practical part: includes writing report with discussion about studied experiments (15%) Second: (60%) of the mark is based on final examination that is comprehensive for the whole of the study materials reviewed during the academic semester. Theoretical exam 50%. Practical exam 10%
Work load:	The workload is 135 hrs. It is the result of 90 hrs. attendance and 45 hrs. self-studies (Assignments, preparation for exam and applications).

Details of lectures per weeks of the academic semester

Date	Theoretical Lectures details	
5/9	Module description+ Introduction to vibrations	
12/9	2/9 Introduction to mechanical vibration+ free vibration analysis on single	
	degree of freedom systems (undamped, Newton's method)	
19/9	Free vibration analysis on single degree of freedom systems (undamped,	
	energy method)	
26/9	Solving problems on both cases+ free vibration analysis on single degree	
	of freedom systems (damped)	
3/10	Quiz 1+ continuing free vibration analysis on single degree of freedom	
	systems (damped)	
10/10	Solving problems+ forced vibration analysis on single degree of freedom	
	systems (undamped)	
17/10	Solving problems+ forced vibration analysis on single degree of freedom	
	systems (damped)	
24/10	Solving problems+ Quiz2	
31/10	Continuous exam 1+ Coulomb damping	
7/11	Solving problems+ rotating unbalance	
14/11	Quiz 3+ support motion	
21/11	Solving problems + vibration absorption systems	
28/11	Multi-degree of freedom systems (free vibration analysis, undamped)	
5/12	Multi-degree of freedom systems (free vibration analysis, damped)	
12/12	Solving problems+ continuous exam 2	
	5/9 12/9 19/9 26/9 3/10 10/10 17/10 24/10 31/10 7/11 14/11 21/11 28/11 5/12	