Exact Equation

A differential equation of type

$$P(x,y)dx + Q(x,y)dy = 0$$

is called an exact differential equation if there exists a function of two variables $u\left(x,y\right)$ with continuous partial derivatives such that

$$du\left(x,y\right) =P\left(x,y\right) dx+Q\left(x,y\right) dy.$$

The general solution of an exact equation is given by

$$u\left(x,y\right) =C,$$

where C is an arbitrary constant.

Test for Exactness

Let functions P(x, y) and Q(x, y) have continuous partial derivatives in a certain domain D. The differential equation P(x, y)dx + Q(x, y)dy = 0 is an exact equation if and only if

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$

Algorithm for Solving an Exact Differential Equation

1 First it's necessary to make sure that the differential equation is exact using the test for exactness:

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$

Then we write the system of two differential equations that define the function $u\left(x,y\right)$:

$$\begin{cases} \frac{\partial u}{\partial x} = P\left(x,y\right) \\ \frac{\partial u}{\partial y} = Q\left(x,y\right) \end{cases}$$

3 Integrate the first equation over the variable x. Instead of the constant C, we write an unknown function of y:

$$u\left(x,y
ight) =\int P\left(x,y
ight) dx+arphi \left(y
ight) .$$

Differentiating with respect to y, we substitute the function $u\left(x,y\right)$ into the second equation:

$$rac{\partial u}{\partial y} = rac{\partial}{\partial y} \left[\int P\left(x,y
ight) dx + arphi\left(y
ight)
ight] = Q\left(x,y
ight).$$

From here we get expression for the derivative of the unknown function $\varphi\left(y\right)$:

$$arphi'(y) = Q\left(x,y
ight) - rac{\partial}{\partial y}igg(\int P\left(x,y
ight)dxigg).$$

5 By integrating the last expression, we find the function $arphi\left(y
ight)$ and, hence, the function $u\left(x,y
ight)$:

$$u\left(x,y
ight) =\int P\left(x,y
ight) dx+arphi \left(y
ight) .$$

6 The general solution of the exact differential equation is given by

$$u\left(x,y\right) =C.$$

Note:

In Step 3, we can integrate the second equation over the variable y instead of integrating the first equation over x. After integration we need to find the unknown function $\psi(x)$.

Example 1.

Solve the differential equation

$$2xydx + (x^2 + 3y^2)dy = 0.$$

Solution.

The given equation is exact because the partial derivatives are the same:

$$rac{\partial Q}{\partial x} = rac{\partial}{\partial x} ig(x^2 + 3y^2 ig) = 2x, \;\; rac{\partial P}{\partial y} = rac{\partial}{\partial y} (2xy) = 2x.$$

We have the following system of differential equations to find the function u(x,y):

$$\left\{ egin{array}{l} rac{\partial u}{\partial x} = 2xy \ rac{\partial u}{\partial y} = x^2 + 3y^2. \end{array}
ight.$$

By integrating the first equation with respect to x, we obtain

$$u\left(x,y
ight) =\int 2xydx=x^{2}y+arphi \left(y
ight) .$$

Substituting this expression for $u\left(x,y\right)$ into the second equation gives us:

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left[x^2 y + \varphi \left(y \right) \right] = x^2 + 3y^2, \ \Rightarrow x^2 + \varphi' \left(y \right) = x^2 + 3y^2, \ \Rightarrow \varphi' \left(y \right) = 3y^2.$$

By integrating the last equation, we find the unknown function $\varphi\left(y\right)$:

$$arphi\left(y
ight) =\int 3y^{2}dy=y^{3},$$

so that the general solution of the exact differential equation is given by

$$x^2y + y^3 = C,$$

where C is an arbitrary constant.

Example 2.

Find the solution of the differential equation

$$(6x^2 - y + 3)dx + (3y^2 - x - 2)dy = 0.$$

Solution.

We check this equation for exactness:

$$rac{\partial Q}{\partial x}=rac{\partial}{\partial x}ig(3y^2-x-2ig)=-1, \ \ rac{\partial P}{\partial y}=rac{\partial}{\partial y}ig(6x^2-y+3ig)=-1.$$

Hence, the given differential equation is exact. Write the system of equations to determine the function u(x, y):

$$\left\{ egin{aligned} rac{\partial u}{\partial x} &= P\left(x,y
ight) = 6x^2 - y + 3 \ rac{\partial u}{\partial y} &= Q\left(x,y
ight) = 3y^2 - x - 2 \end{aligned}
ight.$$

Integrate the first equation with respect to the variable x assuming that y is a constant. This produces:

$$u\left(x,y
ight) =\int \left(6x^{2}-y+3
ight) dx=rac{6x^{3}}{3}-xy+3x+arphi \left(y
ight) =2x^{3}-xy+3x+arphi \left(y
ight) .$$

Here we introduced a continuous differentiable function $\varphi\left(y
ight)$ instead of the constant C.

Plug in the function u(x, y) into the second equation:

$$rac{\partial u}{\partial y}=rac{\partial}{\partial y}\left[2x^{3}-xy+3x+arphi\left(y
ight)
ight]=-\mathscr{L}+arphi'\left(y
ight)=3y^{2}-\mathscr{L}-2.$$

We get equation for the derivative $\varphi'(y)$:

$$\varphi'(y)=3y^2-2.$$

Integrating gives the function $\varphi(y)$:

$$arphi\left(y
ight)=\int \left(3y^2-2
ight)dy=y^3-2y.$$

So, the function u(x, y) is given by

$$u(x,y) = 2x^3 - xy + 3x + y^3 - 2y.$$

Hence, the general solution of the equation is defined by the following implicit expression:

$$2x^3 - xy + 3x + y^3 - 2y = C,$$

Example 3.

Solve the differential equation

$$e^y dx + (2y + xe^y) dy = 0.$$

Solution.

First we check this equation for exactness:

$$rac{\partial Q}{\partial x} = rac{\partial}{\partial x}(2y + xe^y) = e^y, \;\; rac{\partial P}{\partial y} = rac{\partial}{\partial y}(e^y) = e^y.$$

We see that $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, so that this equation is exact. Find the function u(x,y) from the system of equations:

$$\left\{ egin{aligned} rac{\partial u}{\partial x} &= e^y \ rac{\partial u}{\partial y} &= 2y + xe^y \end{aligned}
ight.$$

Hence,

$$u\left(x,y
ight) =\int P\left(x,y
ight) dx=\int e^{y}dx=xe^{y}+arphi \left(y
ight) .$$

Now, by differentiating this expression with respect to y and equating it to $\frac{\partial u}{\partial y}$, we find the derivative $\varphi'(y)$:

$$rac{\partial u}{\partial y}=rac{\partial}{\partial y}[xe^y+arphi\left(y
ight)]=2y+xe^y,\ \Rightarrow xe^y+arphi'\left(y
ight)=2y+xe^y,\ \Rightarrow arphi'\left(y
ight)=2y.$$

As a result, we find $\varphi(y)$ and the entire function u(x,y):

$$arphi\left(y
ight)=\int2ydy=y^{2},\ \Rightarrow u\left(x,y
ight)=xe^{y}+arphi\left(y
ight)=xe^{y}+y^{2}.$$

Thus, the general solution of the differential equation is

$$xe^y + y^2 = C.$$

Example 4.

Solve the equation

$$(2xy - \sin x)dx + (x^2 - \cos y)dy = 0.$$

Solution.

This differential equation is exact because

$$rac{\partial Q}{\partial x} = rac{\partial}{\partial x}ig(x^2-\cos yig) = 2x = rac{\partial P}{\partial y} = rac{\partial}{\partial y}(2xy-\sin x) = 2x.$$

We find the function u(x, y) from the system of two equations:

$$\left\{ egin{aligned} rac{\partial u}{\partial x} &= 2xy - \sin x \ rac{\partial u}{\partial y} &= x^2 - \cos y \end{aligned}
ight. .$$

By integrating the 1st equation with respect to the variable x, we have

$$u\left(x,y
ight) =\int (2xy-\sin x)dx=x^{2}y+\cos x+arphi \left(y
ight) .$$

Plugging in the 2nd equation, we obtain

$$rac{\partial u}{\partial y} = rac{\partial}{\partial y} \left[x^2 y + \cos x + arphi \left(y
ight)
ight] = x^2 - \cos y,$$

$$otag '' + \varphi'(y) =
otag '' - \cos y, \Rightarrow \varphi'(y) = -\cos y.$$

Hence,

$$arphi\left(y
ight)=\int\left(-\cos y
ight)dy=-\sin y.$$

Thus, the function u(x, y) is

$$u(x,y) = x^2y + \cos x - \sin y,$$

so that the general solution of the differential equation is given by the implicit formula:

$$x^2y + \cos x - \sin y = C.$$

Example 5.

Solve the equation

$$\Big(1+2x\sqrt{x^2-y^2}\Big)dx-2y\sqrt{x^2-y^2}dy=0.$$

Solution.

First of all we determine whether this equation is exact:

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(-2y\sqrt{x^2 - y^2} \right) = -2y \cdot \frac{2x}{2\sqrt{x^2 - y^2}} = -\frac{2xy}{\sqrt{x^2 - y^2}},$$

$$rac{\partial P}{\partial y} = rac{\partial}{\partial y} \Big(1 + 2x \sqrt{x^2 - y^2} \Big) = 2x \cdot rac{(-2y)}{2\sqrt{x^2 - y^2}} = -rac{2xy}{\sqrt{x^2 - y^2}}.$$

As you can see, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. Hence, this equation is exact. Find the function u(x,y), satisfying the system of equations:

$$\left\{ egin{aligned} rac{\partial u}{\partial x} &= 1 + 2 x \sqrt{x^2 - y^2} \ rac{\partial u}{\partial y} &= -2 y \sqrt{x^2 - y^2} \end{aligned}
ight.$$

Integrating the first equation gives:

$$u\left(x,y
ight) =\int {\left({1 + 2x\sqrt {{x^2} - {y^2}}}
ight)} dx = x + rac{{{{\left({{x^2} - {y^2}}
ight)}^{rac{3}{2}}}}}{rac{3}{2}} + arphi \left(y
ight) = x + rac{2}{3}{\left({{x^2} - {y^2}}
ight)^{rac{3}{2}}} + arphi \left(y
ight),$$

where $\varphi(y)$ is a certain unknown function of y that will be defined later.

We substitute the result into the second equation of the system:

$$rac{\partial u}{\partial y} = rac{\partial}{\partial y} \left[x + rac{2}{3} \left(x^2 - y^2
ight)^{rac{3}{2}} + arphi \left(y
ight)
ight] = -2y \sqrt{x^2 - y^2},$$

$$-2y\sqrt{x^2-y^2}+arphi'(y)=-2y\sqrt{x^2-y^2}\,,\;\;\Rightarrowarphi'(y)=0.$$

By integrating the last expression, we find the function $\varphi(y)$:

$$\varphi(y) = C$$
,

where C is a constant.

Thus, the general solution of the given differential equation has the form:

$$x + \frac{2}{3}(x^2 - y^2)^{\frac{3}{2}} + C = 0.$$

Example 6.

Solve the differential equation

$$\frac{1}{v^2} - \frac{2}{x} = \frac{2xy'}{v^3}$$

with the initial condition y(1) = 1.

Solution.

Check the equation for exactness by converting it into standard form:

$$rac{1}{y^2}-rac{2}{x}=rac{2x}{y^3}rac{dy}{dx},\;\;\Rightarrow \left(rac{1}{y^2}-rac{2}{x}
ight)\!dx=rac{2x}{y^3}dy,\;\;\Rightarrow \left(rac{1}{y^2}-rac{2}{x}
ight)\!dx-rac{2x}{y^3}dy=0.$$

The partial derivatives are

$$rac{\partial Q}{\partial x} = rac{\partial}{\partial x} \left(-rac{2x}{y^3}
ight) = -rac{2}{y^3}, \quad rac{\partial P}{\partial y} = rac{\partial}{\partial y} \left(rac{1}{y^2} - rac{2}{x}
ight) = -rac{2}{y^3}.$$

Hence, the given equation is exact. Therefore, we can write the following system of equations to determine the function u(x, y):

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{1}{y^2} - \frac{2}{x} \\ \frac{\partial u}{\partial y} = -\frac{2x}{y^3} \end{cases}.$$

In the given case, it is more convenient to integrate the second equation with respect to the variable y:

$$u\left(x,y
ight) =\int\left(-rac{2x}{y^{3}}
ight) dy=rac{x}{y^{2}}+\psi\left(x
ight) .$$

Now we differentiate this expression with respect to the variable x:

$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left[\frac{x}{y^2} + \psi(x) \right] = \frac{1}{y^2} - \frac{2}{x}, \quad \Rightarrow \frac{1}{y^2} + \psi'(x) = \frac{1}{y^2} - \frac{2}{x},$$

$$\psi(x)=-2\ln|x|=\lnrac{1}{x^2}.$$

Thus, the general solution of the differential equation in implicit form is given by the expression:

$$rac{x}{y^2} + \ln rac{1}{x^2} = C.$$

The particular solution can be found using the initial condition y(1) = 1. By substituting the initial values, we find the constant C:

$$\frac{1}{1^2} + \ln \frac{1}{1^2} = C, \ \Rightarrow 1 + 0 = C, \ \Rightarrow C = 1.$$

Hence, the solution of the given initial value problem is

$$\frac{1}{y^2} + \ln \frac{1}{x^2} = 1.$$